Quite Easy One

Level pending

For three number x x , y y , z z , the following holds.

3 x = 2 y = 6 z { 3 }^{ x }={ 2 }^{ y }={ 6 }^{ z }

Evaluate 1 x + 1 y 1 z \boxed{\frac { 1 }{ x } +\frac { 1 }{ y } -\frac { 1 }{ z }}


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Min-woo Lee
Apr 30, 2014

Let 3 x = 2 y = 6 z = t { 3 }^{ x }={ 2 }^{ y }={ 6 }^{ z }=t .

Then we can see that,

t 1 x = 3 { t }^{ \frac { 1 }{ x } }=3

t 1 y = 2 { t }^{ \frac { 1 }{ y } }=2

t 1 z = 6 { t }^{ \frac { 1 }{ z } }=6

From law of exponent , we get

t 1 x + 1 y 1 z = 3 2 6 = 1 { t }^{ \frac { 1 }{ x } +\frac { 1 }{ y } -\frac { 1 }{ z } }=\frac { 3\cdot 2 }{ 6 }=1

1 x + 1 y 1 z = log t 3 2 6 = log t 1 = 0 \quad \frac { 1 }{ x } +\frac { 1 }{ y } -\frac { 1 }{ z } =\log _{ t }{ \frac { 3\cdot 2 }{ 6 } } =\log _{ t }{ 1 } =0

1 x + 1 y 1 z = 0 \therefore \quad \frac { 1 }{ x } +\frac { 1 }{ y } -\frac { 1 }{ z } =0

Hoe did you get that answer 3.2/6

Shabaz Rahman - 7 years, 1 month ago

Log in to reply

Easy! It is known that for any real number a,r, and s, the following holds.

a r a s = a r + s { a }^{ r }\cdot { a }^{ s }={ a }^{ r+s }

a r ÷ a s = a r s { a }^{ r }\div { a }^{ s }={ a }^{ r-s }

Therefore, since t 1 x = 3 { t }^{ \frac { 1 }{ x } }=3 , t 1 y = 2 { t }^{ \frac { 1 }{ y } }=2 , t 1 z = 6 { t }^{ \frac { 1 }{ z } }=6 ,

t 1 x t 1 y = 3 2 = t 1 x + 1 y { t }^{ \frac { 1 }{ x } }\cdot { t }^{ \frac { 1 }{ y } }= 3\cdot 2 ={ t }^{ \frac { 1 }{ x } +\frac { 1 }{ y } } ,

( t 1 x t 1 y ) ÷ t 1 z = ( 3 2 ) ÷ 6 = t 1 x + 1 y 1 z \left( { t }^{ \frac { 1 }{ x } }\cdot { t }^{ \frac { 1 }{ y } } \right) \div { t }^{ \frac { 1 }{ z } }= \left( 3\cdot 2 \right) \div 6 ={ t }^{ \frac { 1 }{ x } +\frac { 1 }{ y } -\frac { 1 }{ z } } .

3 2 6 = t 1 x + 1 y 1 z \therefore \frac { 3\cdot 2 }{ 6 } ={ t }^{ \frac { 1 }{ x } +\frac { 1 }{ y } -\frac { 1 }{ z } }

Min-woo Lee - 7 years, 1 month ago

But if we use logic, then x=y=z = 0 1/x = 1/0.

The ans should be infinity imo

Adrianus Felix - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...