Quotient of Complicated Products

Algebra Level 3

For each positive integer n n , let a n = n 2 2 n + 1 a_n=\dfrac{n^2}{2n+1} . Furthermore, let P P and Q Q be real numbers such that P = a 1 a 2 a 2013 , Q = ( a 1 + 1 ) ( a 2 + 1 ) ( a 2013 + 1 ) . P=a_1a_2\ldots a_{2013},\qquad Q=(a_1+1)(a_2+1)\ldots(a_{2013}+1). What is the sum of the digits of Q P \frac QP ?


The answer is 31.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Cody Johnson
Apr 16, 2014

n = 1 2013 ( a n + 1 ) n = 1 2013 a n = n = 1 2013 a n + 1 a n = n = 1 2013 n 2 2 n + 1 + 1 n 2 2 n + 1 = n = 1 2013 n 2 + 2 n + 1 2 n + 1 n 2 2 n + 1 = n = 1 2013 n 2 + 2 n + 1 n 2 = n = 1 2013 ( n + 1 ) 2 n 2 = n = 1 2013 ( n + 1 ) 2 n = 1 2013 n 2 = n = 2 2014 n 2 n = 1 2013 n 2 = 201 4 2 n = 2 2013 n 2 1 2 n = 2 2013 n 2 = 201 4 2 = 4056196 \begin{aligned} \frac{\prod_{n=1}^{2013}(a_n+1)}{\prod_{n=1}^{2013}a_n}&=\prod_{n=1}^{2013}\frac{a_n+1}{a_n}\\ &=\prod_{n=1}^{2013}\frac{\frac{n^2}{2n+1}+1}{\frac{n^2}{2n+1}}\\ &=\prod_{n=1}^{2013}\frac{\frac{n^2+2n+1}{2n+1}}{\frac{n^2}{2n+1}}\\ &=\prod_{n=1}^{2013}\frac{n^2+2n+1}{n^2}\\ &=\prod_{n=1}^{2013}\frac{(n+1)^2}{n^2}\\ &=\frac{\prod_{n=1}^{2013}(n+1)^2}{\prod_{n=1}^{2013}n^2}\\ &=\frac{\prod_{n=2}^{2014}n^2}{\prod_{n=1}^{2013}n^2}\\ &=\frac{2014^2\cdot\prod_{n=2}^{2013}n^2}{1^2\cdot\prod_{n=2}^{2013}n^2}\\ &=2014^2=4056196 \end{aligned}

4 + 0 + 5 + 6 + 1 + 9 + 6 = 31 4+0+5+6+1+9+6=\boxed{31}

An easy way to compute 201 4 2 2014^2 is 200 0 2 + 1 4 2 + 2 ( 2000 ) ( 14 ) = 4000000 + 196 + 56000 = 4056196 2000^2+14^2+2(2000)(14)=4000000+196+56000=4056196

Cody Johnson - 7 years, 1 month ago

Cool problem! !!!!

Manu Attri - 7 years ago
Finn Hulse
Apr 17, 2014

Exactly the same as @Cody Johnson . Great job! :D

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...