R + G + B R + G + B

Geometry Level 2

A B E \triangle ABE and D B C \triangle DBC are both right angled triangles(with A B C \angle ABC as right angle), and circle with center in O O is inscribed to both of these triangles. What is the sum of b l u e \color{#3D99F6}blue , r e d \color{#D61F06}red , and g r e e n \color{#20A900}green angle in degrees?


The answer is 90.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

If the sum θ b l u e + θ r e d + θ g r e e n \color{#3D99F6}{\theta_{blue}} \color{#333333}{+} \color{#D61F06}{\theta_{red}} \color{#333333}{+} \color{#20A900}{\theta_{green}} must be constant we can consider the "limit case" where A D A\equiv D and C E C\equiv E : in this case θ r e d = 0 ° \color{#D61F06}{\theta_{red}}\color{#333333}{=0°} while θ b l u e + θ g r e e n + 90 ° = 180 ° \color{#3D99F6}{\theta_{blue}} \color{#333333}{+} \color{#20A900}{\theta_{green} \color{#333333}{+ 90° = 180°}} so θ b l u e + θ r e d + θ g r e e n = 90 ° \color{#3D99F6}{\theta_{blue}} \color{#333333}{+} \color{#D61F06}{\theta_{red}} \color{#333333}{+} \color{#20A900}{\theta_{green}} \color{#333333}{=90°} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...