Race to end Fibonacci

S = ( F 2015 + F 2013 ) ( F 2013 + F 2012 ) \large{S=\left( { F }_{ 2015 }+{ F }_{ 2013 } \right) \left( { F }_{ 2013 }+{ F }_{ 2012 } \right) }

If F n F_{n} is the n th n^\text{th} Fibonacci term, and S S can be expressed as F a F_{a} , then find the value of a + 2 10 \dfrac{a+2}{10}


The answer is 403.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Daniel Turizo
Nov 9, 2015

S = ( F 2015 + F 2013 ) ( F 2013 + F 2012 ) = ( F 2015 + F 2013 ) F 2014 S = \left( {F_{2015} + F_{2013} } \right)\left( {F_{2013} + F_{2012} } \right) = \left( {F_{2015} + F_{2013} } \right)F_{2014} S = ( φ 2015 + φ 2015 + φ 2013 + φ 2013 5 ) φ 2014 φ 2014 5 S = \left( {\frac{{\varphi ^{2015} + \varphi ^{ - 2015} + \varphi ^{2013} + \varphi ^{ - 2013} }}{{\sqrt 5 }}} \right)\frac{{\varphi ^{2014} - \varphi ^{ - 2014} }}{{\sqrt 5 }} S = 1 5 ( φ 4029 + φ 4029 + φ 4027 + φ 4027 ) S = \frac{1}{5}\left( {\varphi ^{4029} + \varphi ^{ - 4029} + \varphi ^{4027} + \varphi ^{ - 4027} } \right) S 1 5 ( φ 4029 + φ 4027 ) = φ 4027 5 φ 2 + 1 5 S \approx \frac{1}{5}\left( {\varphi ^{4029} + \varphi ^{4027} } \right) = \frac{{\varphi ^{4027} }}{{\sqrt 5 }}\frac{{\varphi ^2 + 1}}{{\sqrt 5 }} S = φ 4028 5 φ 4028 φ 4028 5 = F 4028 S = \frac{{\varphi ^{4028} }}{{\sqrt 5 }} \approx \frac{{\varphi ^{4028} - \varphi ^{ - 4028} }}{{\sqrt 5 }} = F_{4028}

Therefore, a = 4028 a = 4028 and:

a + 2 10 = 403 \frac{{a + 2}}{{10}} = \boxed{403}

Otto Bretscher
Oct 19, 2015

Considering the equation Q 2 n = ( Q n ) 2 Q^{2n}=(Q^n)^2 for the Fibonacci Q-matrix , we find the equation F 2 n = ( F n + 1 + F n 1 ) F n F_{2n}=(F_{n+1}+F_{n-1})F_n . Thus S = ( F 2015 + F 2013 ) F 2014 = F 4028 S=(F_{2015}+F_{2013})F_{2014}=F_{4028} , with a + 2 10 = 403 \frac{a+2}{10}=\boxed{403}

Moderator note:

Good observation of using matrices to calculate Fibonacci numbers. They yield all kinds of equations pretty magically.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...