Radical difference

Algebra Level 1

Which of the following numbers is the smallest?

1 3 + 4 \frac1{\sqrt3 + \sqrt4} 1 4 + 5 \frac1{\sqrt4 + \sqrt5} 1 2 + 3 \frac1{\sqrt2 + \sqrt3} 1 1 + 2 \frac1{\sqrt1 + \sqrt2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

To find which fraction is the smallest, we just have to find whose denominator is the largest. Now it’s quite easily seen that 4 + 5 > 3 + 4 > 2 + 3 > 1 + 2 Hence: 1 4 + 5 < 1 3 + 4 < 1 2 + 3 < 1 1 + 2 \text{To find which fraction is the smallest, we just have to find whose denominator is the largest.}\\ \text{Now it's quite easily seen that}\; \sqrt{4}+\sqrt{5}>\sqrt{3}+\sqrt{4}>\sqrt{2}+\sqrt{3}>\sqrt{1}+\sqrt{2}\\ \text{Hence:}\;\boxed{\dfrac{1}{\sqrt{4}+\sqrt{5}}<\dfrac{1}{\sqrt{3}+\sqrt{4}}<\dfrac{1}{\sqrt{2}+\sqrt{3}}<\dfrac{1}{\sqrt{1}+\sqrt{2}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...