Radical Equation 1

Algebra Level 3

Find the integer value of x x satisfying the equation below.

10 + x 3 + 100 = 10 x 3 + 100 \sqrt{10 + \sqrt{x^3 + 100}} = 10 - \sqrt{x^3 + 100}


The answer is -4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jack Rawlin
Feb 13, 2016

10 + x 3 + 100 = 10 x 3 + 100 \sqrt{10 + \sqrt{x^3 + 100}} = 10 - \sqrt{x^3 + 100}

a = x 3 + 100 a = \sqrt{x^3 + 100}

10 + a = 10 a \sqrt{10 + a} = 10 - a

10 + a = 100 20 a + a 2 10 + a = 100 - 20a + a^2

a 2 21 a + 90 = 0 a^2 - 21a + 90 = 0

( a 15 ) ( a 6 ) = 0 (a - 15)(a - 6) = 0

a = 15 , 6 a = 15,~ 6

x 3 + 100 = 15 , 6 \sqrt{x^3 + 100} = 15,~ 6

x 3 + 100 = 225 , 36 x^3 + 100 = 225,~ 36

x 3 = 125 , 64 x^3 = 125,~ -64

x = 5 , 4 x = 5, -4

If x = 5 , 10 + 5 3 + 100 = 10 5 3 + 100 \text{If }x = 5,~ \sqrt{10 + \sqrt{5^3 + 100}} = 10 - \sqrt{5^3 + 100}

10 + 225 = 10 225 \sqrt{10 + \sqrt{225}} = 10 - \sqrt{225}

10 + 15 = 10 15 \sqrt{10 + 15} = 10 - 15

25 = 5 \sqrt{25} = -5

x = x 25 = 5 \sqrt{x} = \mid\sqrt{x}\mid \therefore \sqrt{25} = 5

5 5 x 5 , x = 4 5 \neq -5 \therefore x \neq 5,~ x = -4

x = 4 \large \boxed{x = -4}

Rishabh Jain
Feb 13, 2016

Let 10 + x 3 + 100 = α x 3 + 100 = α 2 10 \sqrt{10 + \sqrt{x^3 + 100}}=\alpha \Rightarrow \sqrt{x^3 + 100}=\alpha^2-10 . Equation transforms to: α = α 2 + 20 \alpha=-\alpha^2+20 α 2 + α 20 = 0 \Rightarrow \alpha^2+\alpha-20=0 α = 4 = 10 + x 3 + 100 \alpha=4=\sqrt{10 + \sqrt{x^3 + 100}} (-5 rejected since α > 0 \alpha>0 ) x 3 = 64 x = 4 \Rightarrow x^3=-64\Rightarrow x=\huge\boxed{\color{#007fff}{-4}}

Oh it's you again!!

Kushagra Sahni - 5 years, 3 months ago

Log in to reply

But it's 4 weeks ago.. ;-) when I had written this solution .. I didn't even remember about it... ;-)

Rishabh Jain - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...