Radical Equations

Algebra Level 3

{ a b = 12 a + b = 24 \begin{cases} \sqrt{a-b} = 12 \\ \sqrt{a} + \sqrt{b} = 24 \\ \end{cases}

Real numbers a a and b b satisfy the system of equations above. Find a b \sqrt{ab} .


The answer is 135.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zee Ell
Oct 8, 2016

a b = 12 \sqrt {a - b} = 12

a b = 144 a - b = 144

a + b = 24 (i) \sqrt {a} + \sqrt {b} = 24 \ \text { (i) }

Since (for non-negative a and b):

a b = ( a + b ) ( a b ) a - b = ( \sqrt {a} + \sqrt {b} ) ( \sqrt {a} - \sqrt {b} )

Therefore:

24 ( a b ) = 144 24 ( \sqrt {a} - \sqrt {b} ) = 144

a b = 6 (ii) \sqrt {a} - \sqrt {b} = 6 \ \text { (ii) }

(i) + (ii):

2 a = 30 2 \sqrt {a} = 30

a = 15 \sqrt {a} = 15

15 + b = 24 15 + \sqrt {b} = 24

b = 9 \sqrt {b} = 9

a b = 15 × 9 = 135 \sqrt {ab} = 15 × 9 = \boxed {135}

First we have that a b = 12 a b = 144 \sqrt{a - b} = 12 \Longrightarrow a - b = 144 .

Next, rewrite the second equation as a = 24 b \sqrt{a} = 24 - \sqrt{b} and then square both sides to end up with

a = 576 48 b + b a b = 576 48 b 144 = 576 48 b a = 576 - 48\sqrt{b} + b \Longrightarrow a - b = 576 - 48\sqrt{b} \Longrightarrow 144 = 576 - 48\sqrt{b} ,

where we substituted in our previous result a b = 144 a - b = 144 . Rearranging gives us

576 144 = 48 b b = 432 48 = 9 a = 24 b = 15 a b = a b = 15 × 9 = 135 576 - 144 = 48\sqrt{b} \Longrightarrow \sqrt{b} = \dfrac{432}{48} = 9 \Longrightarrow \sqrt{a} = 24 - \sqrt{b} = 15 \Longrightarrow \sqrt{ab} = \sqrt{a}\sqrt{b} = 15 \times 9 = \boxed{135} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...