Not so radical expression

Algebra Level 1

y 2 + 10 y + 24 y 2 + 14 y + 48 ÷ y 2 14 y + 48 y 2 + 2 y 48 = ? \large \frac {y^2 + 10y + 24}{y^2 + 14y + 48} \div \frac {y^2-14y +48}{y^2+2y-48} = \ ?

y 2 + 4 y + 16 y \frac{y^2+4y+16}{y} y + 4 y 8 \frac{y+4}{y-8} y 3 y^3 y 6 \frac{y}{6}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nihar Mahajan
Feb 4, 2015

The given expression can be written as-

( y + 4 ) ( y + 6 ) ( y + 8 ) ( y + 6 ) ÷ ( y 8 ) ( y 6 ) ( y 6 ) ( y + 8 ) \displaystyle\frac{(y+4)(y+6)}{(y+8)(y+6)}\div\frac{(y-8)(y-6)}{(y-6)(y+8)}

= ( y + 4 ) ( y + 6 ) ( y + 8 ) ( y + 6 ) × ( y 6 ) ( y + 8 ) ( y 8 ) ( y 6 ) \displaystyle\ =\frac{(y+4)(y+6)}{(y+8)(y+6)}\times\frac{(y-6)(y+8)}{(y-8)(y-6)}

Terms like ( y + 6 ) , ( y + 8 ) , ( y 6 ) (y+6) , (y+8) , (y-6) get cancelled

= y + 4 y 8 =\boxed{\displaystyle\frac{y+4}{y-8}}

Moderator note:

Correct. For completeness, you should show for what values of y y can't this expression be simplified to.

Just to be absolutely precise, one must note that the denominator can't be zero. y ± 6 . . . . a n d y ± 8 \therefore\ y \ne \pm 6 \ .... and \ y \ne \pm 8 Otherwise it's a perfect solution

Curtis Clement - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...