Radicals are getting crazy in 2016

Algebra Level 4

If n = 1 2016 1 n n + 1 + ( n + 1 ) n = a 1 a , \large \displaystyle \sum_{n=1}^{2016} \dfrac{1}{n\sqrt{n+1}+(n+1)\sqrt{n}} = \dfrac{\sqrt{{a}}-1}{\sqrt{{a}}}, find a a .


Inspiration .


The answer is 2017.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chew-Seong Cheong
Jan 28, 2016

Let the sum be S S , then:

S = n = 1 2016 1 n n + 1 + ( n + 1 ) n = n = 1 2016 ( n + 1 ) n n n + 1 ( ( n + 1 ) n + n n + 1 ) ( ( n + 1 ) n n n + 1 = n = 1 2016 ( n + 1 ) n n n + 1 n ( n + 1 ) 2 n 2 ( n + 1 ) = n = 1 2016 ( n + 1 ) n n n + 1 n ( n + 1 ) ( n + 1 n ) = n = 1 2016 ( n + 1 ) n n n + 1 n ( n + 1 ) = n = 1 2016 ( 1 n 1 n + 1 ) = n = 1 2016 1 n n = 2 2017 1 n = 1 1 1 2017 = 2017 1 2017 \begin{aligned} S & = \sum_{n=1}^{2016} \frac{1}{n\sqrt{n+1}+(n+1)\sqrt{n}} \\ & = \sum_{n=1}^{2016} \frac{(n+1)\sqrt{n} - n\sqrt{n+1}}{((n+1)\sqrt{n} + n\sqrt{n+1})((n+1)\sqrt{n} - n\sqrt{n+1}} \\ & = \sum_{n=1}^{2016} \frac{(n+1)\sqrt{n} - n\sqrt{n+1}}{n(n+1)^2 - n^2(n+1)} \\ & = \sum_{n=1}^{2016} \frac{(n+1)\sqrt{n} - n\sqrt{n+1}}{n(n+1)(n+1 - n)} \\ & = \sum_{n=1}^{2016} \frac{(n+1)\sqrt{n} - n\sqrt{n+1}}{n(n+1)} \\ & = \sum_{n=1}^{2016} \left( \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right) \\ & = \sum_{n=1}^{2016} \frac{1}{\sqrt{n}} - \sum_{n=2}^{2017} \frac{1}{\sqrt{n}} \\ & = \frac{1}{\sqrt{1}} - \frac{1}{\sqrt{2017}} \\ & = \frac{\sqrt{2017} -1} {\sqrt{2017}} \end{aligned}

a = 2017 \Rightarrow a = \boxed{2017}

This is more or less the same.

1 n n + 1 + ( n + 1 ) n = 1 ( n ( n + 1 ) ) ( n + n + 1 ) 1 ( n ( n + 1 ) ) ( n + n + 1 ) ( n n + 1 ) ( n n + 1 ) ( n n + 1 ) n ( n + 1 ) = 1 n + 1 1 n \frac{1} {n\sqrt{n+1}+(n+1)\sqrt{n}}=\frac{1}{(\sqrt{n(n+1)})(\sqrt{n}+\sqrt{n+1})} \\ \frac{1}{(\sqrt{n (n+1)})(\sqrt{n}+\sqrt{n+1})}\cdot \frac{ (\sqrt{n}-\sqrt{n+1})}{ (\sqrt{n}-\sqrt{n+1})} \\ \frac{ (\sqrt{n}-\sqrt{n+1})}{\sqrt{n(n+1)}} = \frac{1}{\sqrt{n+1}}-\frac{1}{\sqrt{n}}

Akshat Sharda - 5 years, 4 months ago

Log in to reply

Yup.. Did the same way.... I was posting this solution only ...this could simplify the messed up denominators a bit.. :)

Rishabh Jain - 5 years, 4 months ago

Elegant solution (+1) :)

Rohit Udaiwal - 5 years, 4 months ago
Manuel Kahayon
Jan 28, 2016

Yay, rohit followed me!

I'm writing a solution on the first problem on his feed XD First, rationalize the denominator

1 n n + 1 + ( n + 1 ) n = 1 n n + 1 + ( n + 1 ) n ( n + 1 ) n n n + 1 ( n + 1 ) n n n + 1 = ( n + 1 ) n n n + 1 n 2 + n = 1 n 1 n + 1 \frac{1}{n\sqrt{n+1}+(n+1)\sqrt{n}} = \frac{1}{n\sqrt{n+1}+(n+1)\sqrt{n}} \cdot \frac{(n+1)\sqrt{n}-n\sqrt{n+1}}{(n+1)\sqrt{n}-n\sqrt{n+1}} = \frac{(n+1)\sqrt{n}-n\sqrt{n+1}}{n^2+n} = \frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}

This makes the sum above telescope to 1 1 1 2 + 1 2 1 3 + + 1 2016 1 2017 \frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+ \cdots +\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}

= 1 1 2017 = 2017 1 2017 = 1-\frac{1}{\sqrt{2017}} = \frac{\boxed{\sqrt{2017}}-1}{\boxed{\sqrt{2017}}}

Therefore, a = 2017 a=\boxed{2017}

That is a great solution (+1) ;)

Rohit Udaiwal - 5 years, 4 months ago

Log in to reply

@rohit udaiwal It was same as this.

A Former Brilliant Member - 5 years, 4 months ago

Log in to reply

Yes I was inspired by that problem and posted this :)

Rohit Udaiwal - 5 years, 4 months ago
Aditya Dhawan
Feb 2, 2016

n = 1 2016 1 n n + 1 + n ( n + 1 ) = n = 1 2016 ( n + 1 ) 2 ( n ) 2 n n + 1 ( n + n + 1 ) = n + 1 n n . n + 1 = 1 n 1 n + 1 = 1 1 1 2 + 1 2 1 3 . . . . . . . . . . 1 2017 = 1 1 2017 = 2017 1 2017 a = 2017 \ \sum _{ n=1 }^{ 2016 }{ \frac { 1 }{ n\sqrt { n+1 } +\sqrt { n } (n+1) } } =\sum _{ n=1 }^{ 2016 }{ \frac { { (\sqrt { n+1 } ) }^{ 2 }-{ (\sqrt { n } ) }^{ 2 } }{ \sqrt { n } \cdot \sqrt { n+1 } (\sqrt { n } +\sqrt { n+1 } ) } } =\sum { \frac { \sqrt { n+1 } -\sqrt { n } }{ \sqrt { n } .\sqrt { n+1 } } } \\ =\sum { \frac { 1 }{ \sqrt { n } } } -\frac { 1 }{ \sqrt { n+1 } } =\quad \frac { 1 }{ 1 } -\frac { 1 }{ \sqrt { 2 } } +\frac { 1 }{ \sqrt { 2 } } -\frac { 1 }{ \sqrt { 3 } } ..........-\frac { 1 }{ \sqrt { 2017 } } =1-\frac { 1 }{ \sqrt { 2017 } } =\frac { \sqrt { 2017 } -1 }{ \sqrt { 2017 } } \\ \Rightarrow \boxed { a=2017 }

Moderator note:

Thanks for providing motivation for the partial fraction decomposition, other than just saying "By observation".

William Isoroku
Feb 6, 2016

Using fractional decomposition:

1 n n + 1 + ( n + 1 ) n = 1 n 1 n + 1 \frac{1}{n\sqrt{n+1}+(n+1)\sqrt{n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}

Then it's a telescoping sequence.

Harish Kp
Jan 29, 2016

Rationalize the given expresses ion and convert into 1 by root n minus 1 by root n+1 form ...to cancel terms....always aim to simplify the exp into a form in which terms cancel out while performing the given operation..(here it is addition..)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...