Radical powers

Algebra Level 4

Find the last three digits of

N = ( 161 + 16 1 2 1 ) 4 3 + ( 161 + 16 1 2 1 ) 4 3 . N=\left(161+\sqrt{161^2-1}\right)^{\frac{4}{3}}+\left(161+\sqrt{161^2-1}\right)^{-\frac{4}{3}}.


The answer is 207.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Pi Han Goh
Jan 1, 2014

Because 16 1 2 ( 16 1 2 1 ) = 1 161^2 - \left ( 161^2 - 1 \right ) = 1 , then ( 161 + 16 1 2 1 ) ( 161 16 1 2 1 ) = 1 \left ( 161 + \sqrt{161^2-1} \right ) \left ( 161 - \sqrt{161^2-1} \right ) = 1

( 161 + 16 1 2 1 ) 1 = 161 16 1 2 1 \left (161 + \sqrt{161^2-1} \right)^{-1} = 161 - \sqrt{161^2-1}

Let a = 161 + 16 1 2 1 , b = 161 16 1 2 1 a b = 1 a = 161 + \sqrt{161^2-1} , b = 161 - \sqrt{161^2-1} \Rightarrow ab=1

N = a 4 3 + b 4 3 N 3 = a 4 + b 4 + 3 ( a b ) 4 3 ( a 4 3 + b 4 3 ) = ( a 2 + b 2 ) 2 2 ( a b ) 2 + 3 N = ( ( a + b ) 2 2 a b ) 2 2 + 3 N = ( 32 2 2 2 ) 2 2 + 3 N N 3 3 N = ( 32 2 2 2 ) 2 2 N 3 ( 32 2 2 2 ) 2 N 3 ( 32 2 2 ) 2 N 32 2 4 3 2207.028 \begin{aligned} N & = & a^{\frac{4}{3}} + b^{\frac{4}{3}} \\ N^3 & = & a^4 + b^4 + 3(ab)^{\frac{4}{3}} \left (a^{\frac{4}{3}} + b^{\frac{4}{3}} \right ) \\ & = & (a^2+b^2)^2 - 2(ab)^2 + 3N \\ & = & \left ( (a+b)^2-2ab \right )^2 - 2 + 3N \\ & = & ( 322^2-2 )^2 - 2 + 3N \\ N^3 - 3N & = & (322^2-2)^2 - 2 \\ N^3 & \approx & (322^2-2)^2 \\ N^3 & \approx & (322^2)^2 \\ N & \approx & 322^{ \frac {4}{3} } \approx 2207.028 \\ \end{aligned}

Trial and error shows that N = 2207 N= 2207 satisfy the equation. The answer is 207 \boxed{207}

This was not my intended solution; it is possible to determine the exact value without resorting to approximation.

Samir Khan - 7 years, 5 months ago

Log in to reply

Got it, we let M = ( 161 + 16 1 2 1 ) 1 3 + ( 161 16 1 2 1 ) 1 3 M = \left ( 161 + \sqrt{161^2-1} \right )^{\frac {1}{3} } + \left ( 161 - \sqrt{161^2-1} \right )^{\frac {1}{3} }

Cube both sides and simplify like what did above for N N , we get a cubic equation, we show that the equation have linear factor of ( M 7 ) (M-7) and another quadratic factor with a negative discriminant, so M = 7 M=7 only, with this, we get a relation of N = ( M 2 2 ) 2 2 = 2207 N = \left ( M^2- 2 \right )^2 - 2 = \boxed{2207}

Pi Han Goh - 7 years, 3 months ago

I also came upon this cubic and got the answer the same way...is there a better method to do this?

Eddie The Head - 7 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...