Radical Rationalization?

Algebra Level 2

What is the value of

6 2 + 3 + 3 2 6 + 3 4 3 6 + 2 ? \dfrac{\sqrt6}{\sqrt2 + \sqrt3} + \dfrac{3\sqrt2}{\sqrt6 + \sqrt3} - \dfrac{4\sqrt3}{\sqrt6 + \sqrt2} ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Siva Prasad
Dec 7, 2015

We can rationalize the denominator..

6 × ( 2 3 ) ( 2 + 3 ) × ( 2 3 ) + 3 2 × ( 6 3 ) ( 6 + 3 ) × ( 6 3 ) 4 3 × ( 6 + 2 ) ( 6 + 2 ) × ( 6 2 ) \Large \frac { \sqrt { 6 } \times \left( \sqrt { 2 } -\sqrt { 3 } \right) }{ \left( \sqrt { 2 } +\sqrt { 3 } \right) \times \left( \sqrt { 2 } -\sqrt { 3 } \right) } +\frac { 3\sqrt { 2 } \times \left( \sqrt { 6 } -\sqrt { 3 } \right) }{ \left( \sqrt { 6 } +\sqrt { 3 } \right) \times \left( \sqrt { 6 } -\sqrt { 3 } \right) } -\frac { 4\sqrt { 3 } \times \left( \sqrt { 6 } +\sqrt { 2 } \right) }{ \left( \sqrt { 6 } +\sqrt { 2 } \right) \times \left( \sqrt { 6 } -\sqrt { 2 } \right) }

That is equal to

6 × ( 2 3 ) 1 + 3 2 × ( 6 3 ) 3 4 3 × ( 6 + 2 ) 4 \Large \frac { \sqrt { 6 } \times \left( \sqrt { 2 } -\sqrt { 3 } \right) }{ -1 } +\frac { 3\sqrt { 2 } \times \left( \sqrt { 6 } -\sqrt { 3 } \right) }{ 3 } -\frac { 4\sqrt { 3 } \times \left( \sqrt { 6 } +\sqrt { 2 } \right) }{ 4 }

Again simplifying

[ 6 × ( 2 3 ) ] + [ 2 × ( 6 3 ) ] [ 3 × ( 6 2 ) ] \large -\left[ \sqrt { 6 } \times \left( \sqrt { 2 } -\sqrt { 3 } \right) \right] +\left[ \sqrt { 2 } \times \left( \sqrt { 6 } -\sqrt { 3 } \right) \right] -\left[ \sqrt { 3 } \times \left( \sqrt { 6 } -\sqrt { 2 } \right) \right]

= 12 + 18 + 12 6 18 + 6 = \large -\sqrt { 12 } +\sqrt { 18 } +\sqrt { 12 } -\sqrt { 6 } -\sqrt { 18 } +\sqrt { 6 }

All cancels off and the the answer will be 0 \boxed{0}

Atul Shivam
Dec 10, 2015

rationalize denominator and u will find it will be reduced to 0 \boxed{0}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...