y − y − y − ⋯ = x + x + x + ⋯
Given the equation above, it is found that x and y are related as y − x − 1 y − x + 1 = 1 + b x 1 + a y for some positive integers a and b .
Evaluate: a + b
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
You can also use Componendo et Dividendo to easily get that simplified ratio form.
z 2 = y − z = x + z ⟹ 1 y − x = 1 2 z ⟹ y − x − 1 y − x + 1 = 2 z − 1 2 z + 1
Let
y − y − y … = x + x + x … = p
Notice that p appears as the second term under the square roots, so we can write
y − p = p
⟹ y = p 2 + p … ( 1 )
and similarly
x = p 2 − p
and so
y − x = 2 p
and the required numerator becomes
2 p + 1 = 1 + a y
⟹ 4 p 2 + 4 p + 1 = 1 + a y
⟹ 4 ( p 2 + p ) = a y
and now using (1) we can see that a = 4
Analogous reasoning for the denominator yields b = 4 and so
a + b = 8
Problem Loading...
Note Loading...
Set Loading...
Let z = y − y − y − . . . = x + x + x + . . .
⇒ { z 2 = y − z z 2 = x + z ⇒ y = z 2 + z ⇒ x = z 2 − z
⇒ { y − x + 1 = z 2 + z − z 2 + z + 1 = 2 z + 1 y − x + 1 = z 2 + z − z 2 + z − 1 = 2 z − 1
⇒ ⎩ ⎪ ⎨ ⎪ ⎧ z 2 = y − z z 2 = x + z ⇒ z 2 + z − y = 0 ⇒ z 2 − z − x = 0 ⇒ z = 2 − 1 + 1 + 4 y ⇒ z = 2 1 + 1 + 4 x
⇒ y − x − 1 y − z + 1 = 2 z − 1 2 z + 1 = 1 + 1 + 4 x − 1 − 1 + 1 + 4 y + 1 = 1 + 4 x 1 + 4 y
⇒ a + b = 4 + 4 = 8