Radical Relations

Algebra Level 4

y y y = x + x + x + \displaystyle \sqrt{ y - \sqrt{ y - \sqrt{ y - \cdots }}} = \sqrt{ x + \sqrt{ x + \sqrt{ x + \cdots }}}

Given the equation above, it is found that x x and y y are related as y x + 1 y x 1 = 1 + a y 1 + b x \displaystyle \frac{y-x+1}{y-x -1} = \frac{\sqrt{1 + ay}}{\sqrt{1 + bx}} for some positive integers a a and b b .

Evaluate: a + b a+b


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 29, 2015

Let z = y y y . . . = x + x + x + . . . \space z = \sqrt{y-\sqrt{y-\sqrt{y-...}}} = \sqrt{x+\sqrt{x+\sqrt{x+...}}}

{ z 2 = y z y = z 2 + z z 2 = x + z x = z 2 z \Rightarrow \begin{cases} z^2 = y - z & \Rightarrow y = z^2+ z \\ z^2 = x + z & \Rightarrow x = z^2 - z \end{cases}

{ y x + 1 = z 2 + z z 2 + z + 1 = 2 z + 1 y x + 1 = z 2 + z z 2 + z 1 = 2 z 1 \Rightarrow \begin{cases} y - x + 1 = z^2+ z - z^2+ z + 1 = 2z + 1 \\ y - x + 1 = z^2+ z - z^2+ z - 1 = 2z - 1 \end{cases}

{ z 2 = y z z 2 + z y = 0 z = 1 + 1 + 4 y 2 z 2 = x + z z 2 z x = 0 z = 1 + 1 + 4 x 2 \Rightarrow \begin{cases} z^2 = y - z & \Rightarrow z^2+ z - y = 0 & \Rightarrow z = \dfrac {-1+\sqrt{1+4y}}{2} \\ z^2 = x + z & \Rightarrow z^2 - z - x = 0 & \Rightarrow z = \dfrac {1+\sqrt{1+4x}}{2} \end{cases}

y z + 1 y x 1 = 2 z + 1 2 z 1 = 1 + 1 + 4 y + 1 1 + 1 + 4 x 1 = 1 + 4 y 1 + 4 x \Rightarrow \dfrac {y-z+1}{y-x-1} = \dfrac {2z+1}{2z-1} = \dfrac {-1+\sqrt{1+4y} +1} {1+\sqrt{1+4x} -1} = \dfrac {\sqrt{1+4y}} {\sqrt{1+4x}}

a + b = 4 + 4 = 8 \Rightarrow a + b = 4 + 4 = \boxed{8}

You can also use Componendo et Dividendo to easily get that simplified ratio form.

z 2 = y z = x + z y x 1 = 2 z 1 y x + 1 y x 1 = 2 z + 1 2 z 1 z^2=y-z=x+z\implies \frac{y-x}{1}=\frac{2z}{1}\implies \frac{y-x+1}{y-x-1}=\frac{2z+1}{2z-1}

Prasun Biswas - 6 years, 1 month ago
Peter Macgregor
Apr 30, 2015

Let

y y y = x + x + x = p \displaystyle \sqrt{y-\sqrt{y-\sqrt{y}\dots}}=\sqrt{x+\sqrt{x+\sqrt{x}\dots}}=p

Notice that p appears as the second term under the square roots, so we can write

y p = p \displaystyle \sqrt{y-p}=p

y = p 2 + p ( 1 ) \implies y=p^2+p\dots(1)

and similarly

x = p 2 p x=p^2-p

and so

y x = 2 p y-x=2p

and the required numerator becomes

2 p + 1 = 1 + a y 2p+1=\sqrt{1+ay}

4 p 2 + 4 p + 1 = 1 + a y \implies 4p^2+4p+1=1+ay

4 ( p 2 + p ) = a y \implies 4(p^2+p)=ay

and now using (1) we can see that a = 4 a=4

Analogous reasoning for the denominator yields b = 4 b=4 and so

a + b = 8 a+b=\boxed{8}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...