Radical Sums

Algebra Level 1

{ a + b = 25 a + b = 31 \large{\begin{cases} \sqrt{a + b} = 25 \\ \sqrt{a} + \sqrt{b} = 31 \end{cases}}

Given that a a and b b satisfy the system of equations above, what is the value of a b \sqrt{ab} ?


The answer is 168.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant wiki: Radical Equations - Basic

{ a + b = 25 . . . ( 1 ) a + b = 31 . . . ( 2 ) \begin{cases}\sqrt{\color{#D61F06}{a+b}}=25 \ ...(1) \\ \sqrt{a}+\sqrt{b}=31 \ ...(2) \end{cases}

Squring both sides to ( 1 ) (1) .

a + b = ( 25 ) 2 \implies \color{#D61F06}{a+b}=(25)^2

Squring both sides to ( 2 ) (2) .

a + b ( 25 ) 2 + 2 a b = ( 31 ) 2 \implies \underbrace{\color{#D61F06}{a+b}}_{(25)^2}+2\sqrt{\color{#20A900}{ab}}=(31)^2

2 a b = ( 31 ) 2 ( 25 ) 2 \implies 2\sqrt{\color{#20A900}{ab}}=(31)^2-(25)^2

a b = 56 × 6 2 \implies \sqrt{\color{#20A900}{ab}}=\dfrac{56×6}{2}

a b = 168 \therefore \sqrt{\color{#20A900}{ab}}=\color{#BA33D6}{\boxed{168}} .

By squaring both sides of the equations, we will get:

a + b = 25 ; a + b = 2 5 2 \sqrt{a + b} = 25; a + b = 25^2 a + b = 31 ; a + 2 a b + b = 3 1 2 \sqrt{a} + \sqrt{b} = 31; a + 2\sqrt{ab} + b = 31^2

Subtracting the equations, we will get:

2 a b = 3 1 2 2 5 2 = ( 31 25 ) ( 31 + 25 ) = 6 × 56 2\sqrt{ab} = 31^2 - 25^2 = (31 - 25)(31 + 25) = 6\times 56

Thus, a b = 3 × 56 = 168 \sqrt{ab} = 3\times 56 = \boxed{168} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...