Doubly Radical Angle

Geometry Level 3

cos π A = 1 2 2 + 2 + 3 \large \cos \dfrac \pi A =\dfrac12 \sqrt{2 + \sqrt{2 + \sqrt3}}

Find the positive value of A A satisfying the equation above.


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Sep 26, 2016

cos x = 1 2 2 + 2 + 3 cos 2 x = 2 + 2 + 3 4 4 cos 2 x = 2 + 2 + 3 4 cos 2 x 2 = 2 + 3 2 ( 2 cos 2 x 1 ) = 2 + 3 2 cos 2 x = 2 + 3 4 cos 2 2 x = 2 + 3 4 cos 2 2 x 2 = 3 2 cos 4 x = 3 cos 4 x = 3 2 4 x = π 6 x = π 24 \begin{aligned} \cos x & = \frac 12 \sqrt{2+\sqrt{2+\sqrt 3}} \\ \cos^2 x & = \frac {2+\sqrt{2+\sqrt 3}}4 \\ 4 \cos^2 x & = 2+\sqrt{2+\sqrt 3} \\ 4 \cos^2 x - 2 & = \sqrt{2+\sqrt 3} \\ 2(2 \cos^2 x - 1) & = \sqrt{2+\sqrt 3} \\ 2 \cos 2x & = \sqrt{2+\sqrt 3} \\ 4 \cos^2 2x & = 2+\sqrt 3 \\ 4 \cos^2 2x - 2 & = \sqrt 3 \\ 2 \cos 4x & = \sqrt 3 \\ \cos 4x & = \frac {\sqrt 3}2 \\ \implies 4x & = \frac \pi 6 \\ x & = \frac \pi {24} \end{aligned}

A = 24 \implies A = \boxed{24}

An easy to follow solution for once! Horray!

Alex Li - 4 years, 8 months ago
Rocco Dalto
Oct 1, 2016

cos π A = 1 2 2 + 2 + 3 \large \cos \dfrac \pi A =\dfrac12 \sqrt{2 + \sqrt{2 + \sqrt3}} \implies

4 c o s 2 ( π A ) = {\bf 4cos^2(\frac{\pi}{A}) = } 2 + 2 + 3 {\bf 2 + \sqrt{2 + \sqrt{3}} \implies }

4 c o s 2 ( π A ) 2 = 2 + 3 {\bf 4cos^2(\frac{\pi}{A}) - 2 = \sqrt{2 + \sqrt{3}} \implies }

2 ( 2 c o s 2 ( π A ) 1 ) = 2 + 3 {\bf 2(2cos^2(\frac{\pi}{A}) - 1) = \sqrt{2 + \sqrt{3}} \implies }

2 c o s ( 2 π A ) = 2 + 3 {\bf 2cos(\frac{2\pi}{A}) = \sqrt{2 + \sqrt{3}} \implies }

4 c o s 2 ( 2 π A ) = 2 + 3 {\bf 4cos^2(\frac{2\pi}{A}) = 2 + \sqrt{3} \implies}

4 c o s 2 ( 2 π A ) 2 = 3 {\bf 4cos^2(\frac{2\pi}{A}) - 2 = \sqrt{3} \implies}

2 ( 2 c o s 2 ( 2 π A ) 1 ) = 3 {\bf 2(2cos^2(\frac{2\pi}{A}) - 1) = \sqrt{3} \implies }

2 c o s ( 4 π A ) = 3 {\bf 2cos(\frac{4\pi}{A}) = \sqrt{3} \implies }

c o s ( 4 π A ) = 3 2 {\bf cos(\frac{4\pi}{A}) = \frac{\sqrt{3}}{2} \implies }

4 π A = p i 6 {\bf \frac{4\pi}{A} = \frac{pi}{6} \implies }

A = 24 {\bf A = 24 }

Viki Zeta
Sep 26, 2016

Finding x x , the straight way, would be a long journey finding inverse cos (arccos). Let's find the value of x x , through inverse cos formula first.

cos ( x ) = 1 2 2 + 2 + 3 x = cos 1 { 1 2 2 + 2 + 3 } Let 1 2 2 + 2 + 3 = y x = cos 1 ( y ) Using inverse cos formula cos 1 ( A ) = tan 1 [ 1 A 2 A ] x = cos 1 ( y ) = tan 1 [ 1 y 2 y ] Then we find value of arctan using Taylor series y = 1 2 2 + 2 + 3 0.9914 Now let’s attempt to find value of cos 1 ( y ) tan 1 [ 1 y 2 y ] = tan 1 [ 1 ( 0.9914 ) 2 0.9914 ] = tan 1 [ 0.01712604 0.9914 ] = tan 1 [ 0.1309 0.9914 ] = tan 1 ( 0.132 ) Therefore, tan 1 ( 0.132 ) = 0.132 ( 0.132 ) 3 3 + ( 0.132 ) 5 5 ( 0.132 ) 7 7 + ( 0.132 ) 9 9 tan 1 ( 0.132 ) 0.1312 rad x = cos 1 ( y ) = 0.1312 rad x 7. 5 x = π 24 A = 24 \cos(x) = \dfrac{1}{2}\sqrt[]{2+\sqrt[]{2+\sqrt[]{3}}} \\ x = \cos^{-1}\Bigr\{ \dfrac{1}{2}\sqrt[]{2+\sqrt[]{2+\sqrt[]{3}}} \Bigl\} \\ \text{Let } \dfrac{1}{2}\sqrt[]{2+\sqrt[]{2+\sqrt[]{3}}} = y \\ x = \cos^{-1}(y) \\ \text{Using inverse cos formula} \\ \cos^{-1}(A) = \tan^{-1}\Bigl[\dfrac{\sqrt[]{1-A^2}}{A}\Bigr] \\ \implies x = \cos^{-1}(y) = \tan^{-1}\Bigl[\dfrac{\sqrt[]{1-y^2}}{y}\Bigr] \\ \text{Then we find value of arctan using Taylor series} \\ y = \dfrac{1}{2}\sqrt[]{2+\sqrt[]{2+\sqrt[]{3}}} \approx 0.9914 \\ \text{Now let's attempt to find value of } \cos^{-1}(y) \\ \tan^{-1}\Bigl[\dfrac{\sqrt[]{1-y^2}}{y}\Bigr] = \tan^{-1}\Bigl[\dfrac{\sqrt[]{1-(0.9914)^2}}{0.9914}\Bigr] \\ = \tan^{-1}\Bigl[\dfrac{\sqrt[]{0.01712604}}{0.9914}\Bigr] = \tan^{-1}\Bigl[\dfrac{0.1309}{0.9914}\Bigr] = \tan^{-1}(0.132) \\ \text{Therefore, } \\ \tan^{-1}(0.132) = 0.132 - \dfrac{(0.132)^3}{3} + \dfrac{(0.132)^5}{5} - \dfrac{(0.132)^7}{7} + \dfrac{(0.132)^9}{9} \\ \implies \tan^{-1}(0.132) \approx 0.1312 \text{ rad} \\ \color{#3D99F6}{\boxed{\therefore x = \cos^{-1}(y) = 0.1312 \text{ rad }}} \\ \implies x \approx 7.5 ^{\circ} \\ \color{magenta}{\boxed{\therefore x = \dfrac{\pi}{24}} \implies A = 24}

You can also do this the other way, coming in reverse starting with cos ( 15 2 ) \cos(\dfrac{15}{2}) or cos ( π 24 ) \cos(\dfrac{\pi}{24})

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...