Radicals and trig

Geometry Level 4

30 6 5 6 + 2 5 8 \large \displaystyle\frac{\sqrt{30-6\sqrt{5}}-\sqrt{6+2\sqrt{5}}}{8}

The value of the expression above is equal to the sine of a positive acute angle. What is the measure of this principle angle in degrees?


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 15, 2015

30 6 5 6 + 2 5 8 = ( 3 2 ) ( 10 2 5 4 ) ( 1 2 ) ( 6 + 2 5 4 ) = cos 3 0 sin 3 6 sin 3 0 cos 3 6 [See Note] = sin 6 \small \begin{aligned} \frac {\sqrt{30-6\sqrt{5}}-\sqrt{6+2\sqrt{5}}} {8} & = \left(\frac{\sqrt{3}}{2}\right) \left( \color{#D61F06} {\frac {\sqrt{10-2\sqrt{5}}}{4}} \right) - \left(\frac{1}{2}\right) \left(\color{#3D99F6} {\frac {\sqrt{6+2\sqrt{5}}}{4}} \right) \\ & = \cos{30^\circ}\color{#D61F06}{\sin{36^\circ}} - \sin{30^\circ} \color{#3D99F6} {\cos{36^\circ}} \quad \quad \text{[See Note]} \\ & = \sin{\boxed{6}^\circ} \end{aligned}

Note: \color{#D61F06}{\text{Note:}}

From the identity:

cos 7 2 + cos 14 4 = 1 2 2 cos 2 7 2 + cos 7 2 1 2 = 0 4 cos 2 7 2 + 2 cos 7 2 1 = 0 cos 7 2 = 5 1 4 2 cos 2 3 6 1 = 5 1 4 cos 3 6 = 5 + 3 8 = 6 + 2 5 4 sin 3 6 = 1 ( 6 + 2 5 4 ) 2 = 10 + 2 5 4 \small \begin{aligned} \cos{72^\circ} + \cos{144^\circ} & = - \frac{1}{2} \\ \Rightarrow 2 \cos^2{72^\circ} + \cos{72^\circ} -\frac{1}{2} & = 0 \\ 4 \cos^2{72^\circ} + 2\cos{72^\circ} - 1 & = 0 \\ \Rightarrow \cos{72^\circ} & = \frac{\sqrt{5}-1}{4} \\ 2\cos^2{36^\circ} - 1 & = \frac{\sqrt{5}-1}{4} \\ \Rightarrow \color{#3D99F6}{\cos{36^\circ}} & = \sqrt{\frac{\sqrt{5}+3}{8}} = \color{#3D99F6} {\frac{ \sqrt {6+2 \sqrt {5}}}{4}} \\ \Rightarrow \color{#D61F06} {\sin{36^\circ}} & = \sqrt{1 - \left(\frac{ \sqrt {6+2 \sqrt {5}}}{4}\right)^2} = \color{#D61F06} {\frac{\sqrt{10+2 \sqrt{5} } }{4}} \end{aligned}

Moderator note:

Great observation of the product of terms.

How else can one guess that it is sin 6 \sin 6 ^ \circ (and then prove that it actually is equal)?

How do you know that cos72 +cos144=-1/2?

Pi Han Goh - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...