Radicals are complicated

Algebra Level 4

2016 + x 3 + 2016 x 3 = 12 \large \sqrt[3]{2016+\sqrt{x}}+\sqrt[3]{2016-\sqrt{x}}=12

If x = 2 m + 201 6 n x=2^m+2016^n satisfies the equation above, where m m and n n are positive integers , find m + n m+n .


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tommy Li
Jun 13, 2016

2016 + x 3 + 2016 x 3 = 12 \sqrt[3]{2016+\sqrt{x}}+\sqrt[3]{2016-\sqrt{x}}=12

( 2016 + x 3 + 2016 x 3 ) 3 = 1 2 3 (\sqrt[3]{2016+\sqrt{x}}+\sqrt[3]{2016-\sqrt{x}})^3=12^3

( 2016 + x ) + 3 ( 2016 + x ) 2 3 ( 2016 x ) 1 3 + 3 ( 2016 + x ) 1 3 ( 2016 x ) 2 3 + ( 2016 x ) = 1728 (2016+\sqrt{x})+3(2016+\sqrt{x})^{\frac{2}{3}}(2016-\sqrt{x})^{\frac{1}{3}}+3(2016+\sqrt{x})^{\frac{1}{3}}(2016-\sqrt{x})^{\frac{2}{3}}+(2016-\sqrt{x})=1728

( 4032 1728 ) + 3 ( ( 2016 + x ) 1 3 ( 2016 x ) 1 3 ) ) ( ( 2016 + x ) 1 3 + ( 2016 x ) 1 3 ) = 0 (4032-1728)+3((2016+\sqrt{x})^{\frac{1}{3}}(2016-\sqrt{x})^{\frac{1}{3}}))((2016+\sqrt{x})^{\frac{1}{3}}+(2016-\sqrt{x})^{\frac{1}{3}}) = 0

2304 + 3 ( 201 6 2 x ) 1 3 ( 2016 + x 3 + 2016 x 3 ) = 0 2304+3(2016^2-x)^{\frac{1}{3}}(\sqrt[3]{2016+\sqrt{x}}+\sqrt[3]{2016-\sqrt{x}}) = 0

2304 + 3 ( 12 ) ( 201 6 2 x ) 1 3 = 0 2304+3(12)(2016^2-x)^{\frac{1}{3}}=0

64 + ( 201 6 2 x ) 1 3 = 0 64+(2016^2-x)^{\frac{1}{3}}=0

( 201 6 2 x ) 1 3 = 2 6 (2016^2-x)^{\frac{1}{3}}=-2^{6}

201 6 2 x = ( 2 6 ) 3 2016^2-x=(-2^{6})^{3}

x = 2 18 + 201 6 2 x=2^{18}+2016^2

m + n = 18 + 2 = 20 m+n=18+2=20

Nice problem! One picky note: your question should specify that m m and n n are positive integers.

Even with that said, how do we know that 2 18 + 201 6 2 2^{18} + 2016^2 is the only way to write this value? (This is just a fun little exercise.)

Eli Ross Staff - 5 years ago

Log in to reply

2 18 + 201 6 2 = 2 10 ( 2 8 + 6 3 2 ) 2^{18} + 2016^2 = 2^{10}(2^8+63^2) . Therefore, the largest power of 2 2 which divides this number is 2 10 2^{10} .

2 m + 201 6 n 2^m + 2016^n must be divisible by 2 10 2^{10} and not by 2 11 2^{11} . But, the largest power which divides 2 m + 201 6 n 2^m + 2016^n is m i n ( m , 5 n ) min(m,5n) if m n m \neq n or m + k m+k if m = 5 n m=5n for some k k . It is easy to see that m = 10 m = 10 does not satisfy, n = 2 n=2 is the given and m = 5 n = 5 m = 5n = 5 or m = n = 0 m = n = 0 does not satisfy. Therefore, it is a unique representation.

Manuel Kahayon - 4 years, 12 months ago
Son Nguyen
Jun 15, 2016

Let a = 2016 + x 3 ; b = 2016 x 3 a=\sqrt[3]{2016+\sqrt{x}};b=\sqrt[3]{2016-\sqrt{x}}

{ a 3 + b 3 = 4032 a + b = 12 \left\{\begin{matrix} a^3+b^3=4032 & & \\ a+b=12 & & \end{matrix}\right.

{ a 2 a b + b 2 = 336 a + b = 12 a = 12 b \left\{\begin{matrix} a^2-ab+b^2=336 & & \\ a+b=12\rightarrow a=12-b & & \end{matrix}\right.

So that we have 3 b 2 36 b 192 = 0 3b^2-36b-192=0

And b = 4 ; b = 16 b=-4;b=16

2016 x = 16 2016-\sqrt{x}=16 No solution in this case.

2016 x = 4 2016-\sqrt{x}=-4 so we have x = 4326400 = 201 6 2 + 2 18 x=4326400= 2016^2+2^{18}

So that m + n = 20 m+n=20

Thanks you very much! Substitution is quite helpful and efficient.

Tommy Li - 5 years ago

Log in to reply

No welcome,thanks.You too

Son Nguyen - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...