Radicals are complicated(2)

Algebra Level 5

1 2016 x 2016 x 1 2016 x + 2016 x = 1 2016 x 1 \frac{1}{\sqrt{2016x-\sqrt{2016x}}}-\frac{1}{\sqrt{2016x+\sqrt{2016x}}} = \frac{1}{\sqrt{2016x-1}}

If the sum of all real root(s) of the above equation is of the form 1 y \large \frac{1}{y} .

Find y y .


The answer is 1512.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tommy Li
Jun 15, 2016

1 2016 x 2016 x 1 2016 x + 2016 x = 1 2016 x 1 \large \frac{1}{\sqrt{2016x-\sqrt{2016x}}}-\frac{1}{\sqrt{2016x+\sqrt{2016x}}} = \frac{1}{\sqrt{2016x-1}}

2016 x + 2016 x 2016 x 2016 x ( 2016 x ) 2 2016 x = 1 2016 x 1 \large \frac{\sqrt{2016x+\sqrt{2016x}}-\sqrt{2016x-\sqrt{2016x}}}{\sqrt{(2016x)^{2}-2016x}} = \frac{1}{\sqrt{2016x-1}}

2016 x + 2016 x 2016 x 2016 x = ( 2016 x ) 2 2016 x 2016 x 1 \sqrt{2016x+\sqrt{2016x}}-\sqrt{2016x-\sqrt{2016x}} =\large \frac{\sqrt{(2016x)^{2}-2016x}}{\sqrt{2016x-1}}

2016 x + 2016 x 2016 x 2016 x = 2016 x \sqrt{2016x+\sqrt{2016x}}-\sqrt{2016x-\sqrt{2016x}} = \sqrt{2016x}

( 2016 x + 2016 x 2016 x 2016 x ) 2 = ( 2016 x ) 2 (\sqrt{2016x+\sqrt{2016x}}-\sqrt{2016x-\sqrt{2016x}})^{2} = (\sqrt{2016x})^{2}

2016 x + 2016 x 2 ( 2016 x + 2016 x ) ( 2016 x 2016 x ) + 2016 x 2016 x = 2016 x 2016x+\sqrt{2016x} - 2(\sqrt{2016x+\sqrt{2016x}})(\sqrt{2016x-\sqrt{2016x}}) +2016x-\sqrt{2016x}= 2016x

2016 x = 2 ( 2016 x ) 2 2016 x 2016x=2\sqrt{(2016x)^{2}-2016x}

( 2016 x ) 2 = ( 2 ( 2016 x ) 2 2016 x ) 2 (2016x)^2=(2\sqrt{(2016x)^{2}-2016x})^2

201 6 2 x 2 = 4 ( 201 6 2 x 2 2016 x ) 2016^2x^2=4(2016^2x^2-2016x)

3 × 201 6 2 x 2 4 × 2016 x = 0 3 \times 2016^2x^2- 4 \times 2016x = 0

4 x ( 1512 x 1 ) = 0 4x(1512x-1)=0

x = 0 x = 0 (rej.) or x = 1 1512 x = \frac{1}{1512}

y = 1512 y=1512

L.H.S = 1 2016 ( 1 1512 ) 2016 ( 1 1512 ) 1 2016 ( 1 1512 ) + 2016 ( 1 1512 ) \large = \frac{1}{\sqrt{2016 (\frac{1}{1512})-\sqrt{2016 (\frac{1}{1512})}}}-\frac{1}{\sqrt{2016 (\frac{1}{1512})+\sqrt{2016( \frac{1}{1512})}}}

= 1 4 3 4 3 1 4 3 + 4 3 \large = \frac{1}{\sqrt{\frac{4}{3}-\sqrt{\frac{4}{3}}}}-\frac{1}{\sqrt{\frac{4}{3}+\sqrt{\frac{4}{3}}}}

= 1 4 2 3 3 1 4 + 2 3 3 \large = \frac{1}{\sqrt{\frac{4-2\sqrt{3}}{3}}}-\frac{1}{\sqrt{\frac{4+2\sqrt{3}}{3}}}

= 1 3 1 3 1 3 + 1 3 \large = \frac{1}{\frac{\sqrt{3}-1}{\sqrt{3}}}-\frac{1}{\frac{\sqrt{3}+1}{\sqrt{3}}}

= 3 ( ( 3 + 1 ) ( 3 1 ) ( 3 1 ) ( 3 + 1 ) ) = \sqrt{3}(\frac{(\sqrt{3}+1)-(\sqrt{3}-1)}{(\sqrt{3}-1)(\sqrt{3}+1)})

= 3 = \sqrt{3}

R.H.S = 1 2016 ( 1 1512 ) 1 = \frac{1}{\sqrt{2016(\frac{1}{1512})-1}}

= 1 4 3 1 = \frac{1}{\sqrt{\frac{4}{3}-1}}

= 1 ( 1 3 ) = \frac{1}{(\frac{1}{\sqrt{3}})}

= 3 = \sqrt{3}

L.H.S = R.H.S

Tommy Li - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...