What's There to Rationalize?

Algebra Level 2

y x 2 + 1 + x y 2 + 1 \dfrac{y}{x^{2}+1} + \dfrac{x}{y^{2}+1}

If x = 3 + 2 x= \sqrt{3} + \sqrt{2} and y = 3 2 y= \sqrt{3} - \sqrt{2} , then the expression above can be simplified to the form a b b \dfrac { a \sqrt b}{b} where a , b a,b are coprime positive integers with b b square-free.

What is the value of a + b a+b ?


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Since x = 3 + 2 x = \sqrt{3}+\sqrt{2} and y = 3 2 y = \sqrt{3}-\sqrt{2} , x x and y y are the roots of w 2 2 3 w + 1 = 0 w^2 - 2\sqrt{3}w + 1 = 0 . Because w = 2 3 ± 12 4 2 = 3 ± 2 w = \dfrac{2\sqrt{3} \pm \sqrt{12-4}}{2} = \sqrt{3} \pm \sqrt{2} .

This implies that { x 2 2 3 x + 1 = 0 x 2 + 1 = 2 3 x y 2 2 3 y + 1 = 0 y 2 + 1 = 2 3 y x + y = 2 3 x y = 1 \begin{cases} x^2 - 2\sqrt{3}x + 1 = 0 & \Rightarrow x^2 + 1 = 2\sqrt{3}x \\ y^2 - 2\sqrt{3}y + 1 = 0 & \Rightarrow y^2 + 1 = 2\sqrt{3}y \\ x + y = 2\sqrt{3} \\ xy = 1 \end{cases}

Therefore, we have:

y x 2 + 1 + x y 2 + 1 = y 2 3 x + x 2 3 y = 1 2 3 ( y x + x y ) = 1 2 3 ( y 2 + x 2 x y ) = 1 2 3 ( ( x + y ) 2 2 x y 1 ) = 1 2 3 ( ( 2 3 ) 2 2 ( 1 ) ) = 10 2 3 = 5 3 = 5 3 3 \begin{aligned} \frac{y}{x^2+1} + \frac{x}{y^2+1} & = \frac{y}{2\sqrt{3}x} + \frac{x}{2\sqrt{3}y} \\ & = \frac{1}{2\sqrt{3}} \left( \frac{y}{x} + \frac{x}{y} \right) \\ & = \frac{1}{2\sqrt{3}} \left( \frac{y^2+x^2}{xy} \right) \\ & = \frac{1}{2\sqrt{3}} \left( \frac{(x+y)^2 -2xy}{1} \right) \\ & = \frac{1}{2\sqrt{3}} \left((2\sqrt{3})^2 -2(1) \right) \\ & = \frac{10}{2\sqrt{3}} = \frac{5}{\sqrt{3}} = \frac{5\sqrt{3}}{3} \end{aligned}

a + b = 5 + 3 = 8 \Rightarrow a+b = 5+3 = \boxed{8}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...