Radius of a Circle, Given Tangent

Geometry Level 5

P P is a point outside of circle Γ \Gamma . The tangent from P P to Γ \Gamma touches at A A . A line from P P intersects Γ \Gamma at B B and C C such that A C P = 12 0 \angle ACP = 120^\circ . If A C = 16 AC = 16 and A P = 19 AP = 19 , then the radius of Γ \Gamma can be expressed as a b c \frac {a \sqrt{b} }{c} , where b b is an integer not divisible by the square of any prime and a , c a, c are coprime positive integers. What is a + b + c a + b + c ?


The answer is 322.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

10 solutions

Yuchen Liu
May 20, 2014

Let the center of the circle be O, join AB, OA, OB. Let CP=x, radius=R.

In triangle ACP, since we have A P = 19 , A C = 16 , A C P = 12 0 AP=19, AC=16, \angle ACP = 120 ^ \circ by cosine rule, 1 9 2 = x 2 + 1 6 2 2 × 16 cos 12 0 19^2=x^2+16^2-2\times 16\cos 120^\circ ,

Solving the quadratic equation, as x is a positive real value, we get x=5. Therefore CP=5.

By alternate segment theorem, P A C = A B P \angle PAC = \angle ABP , hence triangle ACP is similar to triangle BAP,

So we have A B A P = A C C P , A B 19 = 16 5 , A B = 304 5 \frac {AB}{AP}=\frac {AC}{CP}, \frac {AB}{19}=\frac {16}{5}, AB=\frac {304}{5} .

A s A C P = B A P = 12 0 , O A P = 9 0 , O A B = 3 0 , O A = O B = R , O A B = O B A = 3 0 , A O B = 12 0 As \angle ACP = \angle BAP = 120 ^ \circ, \angle OAP = 90 ^ \circ, \angle OAB = 30 ^ \circ, OA=OB=R, \angle OAB = \angle OBA = 30 ^ \circ, \angle AOB = 120 ^ \circ

By sine rule, we can easily obtain that A B = 3 R AB = \sqrt3 R

Previously we have known that the value of AB is 304 5 \frac {304}{5} , therefore R = 304 3 15 R=\frac{304\sqrt3}{15}

a+b+c = 304+3+15 = 322

Shourya Pandey
May 20, 2014

First of all, we let P C = x PC=x and P A C = θ \angle PAC = \theta . So using the Cosine Rule in triangle P A C PAC , we get x 2 + 256 2 ( x ) ( 16 ) ( c o s 12 0 ) = 361 x^2+256-2(x)(16)(cos 120^\circ )=361 , ( x 5 ) ( x + 21 ) = 0 x-5)(x+21)=0 . x = 5 x=5 , since it is positive. So P C = 5 PC=5 .

Now, by Sine Rule, we get P C s i n θ = P A s i n 120 \frac {PC}{sin \theta} = \frac {PA}{sin 120} , or, s i n θ = 5 3 38 sin \theta = \frac {5\sqrt 3}{38} .

Also C A O = A C O = 9 0 θ \angle CAO = \angle ACO= 90 ^\circ -\theta , because P A O = 9 0 \angle PAO=90^\circ .So A O C = 2 θ \angle AOC = 2\theta .

Using Sine rule in triangle A O C AOC , we get r s i n ( 9 0 θ ) = A C s i n ( 2 θ ) \frac {r}{sin (90 ^\circ -\theta)}=\frac{AC}{sin (2\theta)} , r c o s θ = A C 2 s i n θ c o s θ \frac {r}{cos \theta} = \frac {AC}{2sin\theta cos\theta} , r = A C 2 s i n θ = 16 2 ( 5 3 38 ) r=\frac {AC}{2sin\theta} = \frac {16}{2 (\frac {5\sqrt 3}{38})} , r = 304 3 15 r= \frac {304\sqrt 3}{15} .

So the required answer is 304 + 3 + 15 = 322 304+3+15=322 .

Ruslan Vu
May 20, 2014

The cosine rule: a 2 = b 2 + c 2 2 b c c o s A a^2 = b^2 + c^2 -2bc cosA

We find PC by using this rule: 1 6 2 + P C 2 2 cos 12 0 × 16 × P C = 1 9 2 P C = 5 16^2 + PC^2 -2\cos120^\circ\times16\times PC=19^2 \rightarrow PC=5

The tangent which touches Γ \Gamma at C cuts AP at M A M = C M O A × tan M O A = R × tan C A P = C M \rightarrow AM=CM \rightarrow OA\times\tan \angle MOA=R\times \tan \angle CAP =CM

  1. Using cosine rule for triangle ACP, we deduce that tan C A P = 5 3 37 \tan \angle CAP=\frac{5\sqrt{3}}{37} and cos C P A = 13 19 \cos \angle CPA =\frac{13}{19}
  2. Using cosine rule for triangle CPM, we have: C P 2 = 5 2 + ( 19 C P ) 2 2 × 5 × ( 19 C P ) × 13 19 C P = 304 37 CP^2=5^2+(19-CP)^2-2\times 5\times(19-CP)\times \frac{13}{19}\rightarrow CP=\frac{304}{37}

R = 304 3 15 a + b + c = 322 \Rightarrow R=\frac{304\sqrt{3}}{15} \rightarrow a+b+c=322

Dionys Nipomici
May 20, 2014

from cosine theorem in triangle APC cos(120)=(AC^2+PC^2-AP^2)/(2AC PC) we get that PC=5, then from triangles PAC similiar to PBA we have AC/AB=PC/PA=5/19, this results to AB=16 19/5=304/5. Now from sine theorem in triangle ABC we have AB/sin(60)/2R from here R=AB/(2sin60)=(304/15)*sqrt(3)

Caroline Sudipa
May 20, 2014

Given $$PA=19 and AC=16$$.Let AC subtend $$\angle \theta$$ to the centre O.Now $$PA^2=PC \times PB$$ (Power theorem).Applying cosine rule to $$\triangle ACP,\cos 120^\circ=\frac {16^2+PC^2-19^2}{32 \times PC}$$Hence,we get PC=5.Applying sine rule to $$\triangle ACP,\frac {19}{sin120^\circ}=\frac {5}{\sin \frac {\theta}{2}}$$. or, $$\sin \frac {\theta}{2}=\frac {5\sqrt3}{19 \times 2}.....(1)$$ Now, $$\angle OAP=90^\circ$$.(since,the tangent drawn from an external point to the circle is perp to the radius of the circle).Thus, $$\angle OAC=\angle OCA=90^\circ-\frac {\theta}{2}$$ Thus, $$\angle CAP=\frac {\theta}{2}$$ Applying cosine rule to $$\triangle OAC,\cos(90- \frac {\theta}{2})=\frac {r^2+256-r^2}{32 \times r}$$ or,$$\sin \frac {\theta}{2}=\frac {r^2+256-r^2}{32 \times r}$$ From eq. (1), $$\frac {5\sqrt3}{19 \times 2}=\frac {256}{32 \times r}$$ or, $$r=\frac {304 \times \sqrt3}{15}=\frac {a \times \sqrt b}{c}$$ $$Thus,a+b+c=322$$

Defri Ahmad
May 20, 2014

problem figure

Look at triangle A P C APC ,

A C P = 12 0 0 , A P = 19 , A C = 16 ∠ACP = 120^0, AP=19, AC=16 , using sinus rule,

19 sin ( 12 0 0 ) = 16 sin ( A P C ) sin ( A P C ) = 8 3 19 \frac{19}{\sin (120^0)} = \frac{16}{\sin (∠APC)} \Rightarrow \sin (∠APC) = \frac{8\sqrt{3}}{19}

note that, P A C = 18 0 0 ( A P C + A C P ) ∠PAC =180 ^0 - (∠APC + ∠ACP) , then

sin ( P A C ) = sin ( 18 0 0 ( A P C + A C P ) ) = sin ( A P C + A C P ) = sin ( A P C ) cos ( A C P ) + cos ( A P C ) sin ( A C P ) = 8 3 19 1 2 + cos ( sin 1 ( 8 3 19 ) ) 3 2 = 5 3 38 \sin (∠PAC)=\sin (180 ^0 - (∠APC + ∠ACP))= \sin (∠APC + ∠ACP)\\ =\sin (∠APC )\cos (∠ACP) + \cos (∠APC)\sin (∠ACP) \\ = \frac{8\sqrt{3}}{19}\cdot \frac{-1}{2} + \cos (\sin^{-1}(\frac{8\sqrt{3}}{19})) \cdot \frac{\sqrt{3}}{2} = \frac{5\sqrt{3}}{38}

Now, use the fact that P A PA tangent to the circle, then P A A O PA \perp AO , hence C A O = 9 0 0 P A C ∠CAO =90^0 - ∠PAC . so, we have

sin ( C A O ) = c o s ( P A C ) = 37 38 \sin (∠CAO) = cos (∠PAC) =\frac{37}{38}

Now, look the triangle A C O ACO ,

O A = O C = r OA=OC=r , r r is the radius of the circle, then C A O = A C O ∠CAO = ∠ACO and A O C = 18 0 0 ( C A O + A C O ) ∠AOC =180^0 -(∠CAO+∠ACO) , hence

sin ( A O C ) = sin ( 18 0 0 2 C A O ) = sin ( 2 C A O ) = 2 sin ( C A O ) cos ( C A O ) = 2 37 38 3 8 2 3 7 2 38 = 185 3 722 \sin (∠AOC) = \sin (180^0 - 2∠CAO) =\sin (2∠CAO)\\ =2\sin (∠CAO) \cos (∠CAO) =2 \cdot \frac{37}{38} \cdot \frac{\sqrt{38^2 - 37^2}}{38} =\frac{185\sqrt{3}}{722}

again using sinus rule,

r ( 37 38 ) = 16 ( 185 3 722 ) \frac{r}{(\frac{37}{38})} = \frac{16}{(\frac{185\sqrt{3}}{722})}

so r = 304 3 15 r =\frac{304\sqrt{3}}{15} and the solution of the problem 304 + 3 + 15 = 322 304+3+15=322

Calvin Lin Staff
May 13, 2014

Applying the cosine rule to triangle A C P ACP , we have 1 9 2 = P A 2 = P C 2 + 1 6 2 2 × 16 × P C cos 12 0 19^2 =PA^2 = PC^2 + 16^2 - 2 \times 16 \times PC \cos 120^\circ ( P C + 21 ) ( P C 5 ) = 0 \Rightarrow (PC+21)(PC-5) = 0 . Since P C > 0 PC > 0 we have P C = 5 PC = 5 .

Applying the sine rule on triangle P A C PAC , we have 5 sin P A C = 19 sin 12 0 sin P A C = 5 3 38 \frac {5}{\sin PAC} = \frac {19} {\sin 120^\circ} \Rightarrow \sin PAC = \frac {5 \sqrt{3} } { 38} . By the Alternate Segment Theorem, P A C = C B A \angle PAC = \angle CBA . By the extended sine rule , we have R = A C 2 sin A B C = 16 2 sin P A C = 8 38 3 15 = 304 3 15 R = \frac {AC}{2 \sin ABC} = \frac {16} { 2 \sin PAC} = \frac {8 \cdot 38 \sqrt{3} } { 15} = \frac {304 \sqrt{3} } {15} . Thus a + b + c = 304 + 3 + 15 = 322 a + b + c = 304 + 3+15 = 322 .

Note: Because P C A 9 0 \angle PCA \geq 90^\circ , this tells us that B , C , P B, C, P lie in that order.

Russell Few
May 20, 2014

It is evident that C is closer to P than B because <ACP>90.

Since <ACP=120, by the cosine rule, (AC^2+CP^2-AP^2)/(2 AC CP)=cos(120)=-1/2. Thus (CP^2-105)/(32CP)=-1/2, and CP^2-105+16CP=0 --> (CP+21)(CP-5)=0. Since CP is positive, CP=5.

By the Power of a Point Theorem, BP CP=AP^2=19^2=361. Thus, BP=361/5, so BC=361/5-5=67.2. <ACB=60, so by the cosine rule, (AC^2+BC^2-AB^2)/(2 AC BC)=cos(60)=1/2. Thus AC^2+BC^2-AB^2=AC BC --> 256+67.2^2-AB^2=16*67.2. Solving we get AB=60.8.

By the sine rule, AB/sin(ACB)=2R --> 60.8/sin(60)=2R --> 121.6/sqrt3=2R, so R=60.8/sqrt3=304/(5sqrt3)=(304sqrt3)/15.

The a+b+c=304+3+15=322.

P.S. A bit too easy for 230 pts? Could have been exchanged with a 180 pt. one.

Need to explain steps. What is "than B because 90." and "Since (CO+21)(CP-5) = 0 "?

Calvin Lin Staff - 7 years ago

First we make the circle and mark the points P, A, B and C.

The lenght AP and AC are given. Using the power of a point: AP² = AC*AB So, we found AB.

We can say that <BCA equal 60°, because <BCA = 180° <ACP. Using the cossine law in the circumscribed triangle ABC, we found AB.

As the radius of a circle circumscribed in a triangle is given by R = AB AC BC/S, where S is the area of the triangle.

Using Heron formula to find S, we find R = (304√3)/15.

Need to state the details.

Calvin Lin Staff - 7 years ago
Chi Tong
May 20, 2014

Triangle ACP, using sine rule, we find that angle P = 46.8, angle A = 13.2, PC = 5.

Triangle ACP and BAP are similar (angle PAC = angle ABP) so AC:AB = CP:AP => AB = 16x19/5

Since angle ACB = 60, angle AOB = 120 and AB = sqrt3 R Thus R = 304sqrt3/15

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...