Radius vector!

A radius vector of a particle varies with time t t as r = a t ( 1 α t ) r=at\left(1-\alpha t\right) , where a a is a constant vector and α \alpha is a positive factor. Find the acceleration w w of the particle as function of time.

w = a ( 1 2 t α ) w=a(1-2t\alpha) w = + 2 a α w=+2a\alpha w = 2 a α w=-2a\alpha w = 2 t a α w=2ta\alpha

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tapas Mazumdar
Sep 18, 2016

We have,

r = a t ( 1 α t ) \overrightarrow{r}=at(1-\alpha t)

Differentiating once w.r.t. time t t , we get,

d r d t = a ( 1 2 α t ) v = a ( 1 2 α t ) Here v represents velocity vector as a function of time t ~~~~~~~~~~\dfrac{d\overrightarrow{r}}{dt}=a(1-2\alpha t) \\ \\ \implies \overrightarrow{v}=a(1-2\alpha t)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\small \color{#302B94}{\text{Here}~\overrightarrow{v}~\text{represents velocity vector as a function of time}~t}

Differentiating again w.r.t. time t t , we get,

d v d t = 2 a α w = 2 a α Here w represents acceleration vector which is independent of time t ~~~~~~~~~~\dfrac{d\overrightarrow{v}}{dt}=-2a\alpha \\ \\ \implies \overrightarrow{w}=\boxed{-2a\alpha} ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\small \color{#302B94}{\text{Here}~\overrightarrow{w}~\text{represents acceleration vector which is independent of time}~t}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...