Ramanujan's nested radical is great! (2)

Algebra Level 5

2016 2016 2016 2016 2016 5 4 3 2016 2016 2016 2016 2016 = 201 6 e + x \large \frac{2016\sqrt{2016\sqrt[3]{2016\sqrt[4]{2016\sqrt[5]{2016\cdots}}}}}{\sqrt{2016\sqrt{2016\sqrt{2016\sqrt{2016\sqrt{2016\cdots}}}}}}=2016^{e+x}

Find x x which satisfies the above equation.

Hint : Consider the infinite sum series of e e

Clarification : e 2.71828 e \approx 2.71828 denotes the Euler's number .


The answer is -2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Tommy Li
Jun 29, 2016

Relevant wiki: Nested Functions

e = 1 0 ! + 1 1 ! + 1 2 ! + 1 3 ! + 1 4 ! + e=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\dots

e = 1 + 1 + 1 2 ( 1 + 1 3 ( 1 + 1 4 ( 1 + 1 5 ( 1 + ) ) ) ) e=1+1+\frac{1}{2}(1+\frac{1}{3}(1+\frac{1}{4}(1+\frac{1}{5}(1+\dots))))

e 1 = 1 + 1 2 ( 1 + 1 3 ( 1 + 1 4 ( 1 + 1 5 ( 1 + ) ) ) ) e-1=1+\frac{1}{2}(1+\frac{1}{3}(1+\frac{1}{4}(1+\frac{1}{5}(1+\dots))))

201 6 e 1 = 201 6 1 + 1 2 ( 1 + 1 3 ( 1 + 1 4 ( 1 + 1 5 ( 1 + ) ) ) ) 2016^{e-1}=2016^{1+\frac{1}{2}(1+\frac{1}{3}(1+\frac{1}{4}(1+\frac{1}{5}(1+\dots))))}

201 6 e 1 = 2016 2016 2016 2016 2016... 5 4 3 2016^{e-1}= 2016\sqrt{2016\sqrt[3]{2016\sqrt[4]{2016\sqrt[5]{2016...}}}}

2016 = 201 6 2 = 2016 2016 = 2016 2016 2016 2016 2016... 2016=\sqrt{2016^2}=\sqrt{2016\sqrt{2016}}=\sqrt{2016\sqrt{2016\sqrt{2016\sqrt{2016\sqrt{2016...}}}}}

2016 2016 2016 2016 2016... 5 4 3 2016 2016 2016 2016 2016... = 201 6 e 1 1 \large \frac{2016\sqrt{2016\sqrt[3]{2016\sqrt[4]{2016\sqrt[5]{2016...}}}}}{\sqrt{2016\sqrt{2016\sqrt{2016\sqrt{2016\sqrt{2016...}}}}}}=2016^{e-1-1}

x = 2 \Rightarrow x=-2

Taking logs (base 2016):

log 2016 2016 2016 2016 4 3 = 1 + 1 2 ( 1 + 1 3 ( 1 + 1 4 ( 1 + ) ) ) = 1 1 ! + 1 2 ! + 1 3 ! + 1 4 ! + = e 1 ; \log 2016\sqrt{2016\sqrt[3]{2016\sqrt[4]{2016\cdots}}} = 1 + \tfrac12(1 + \tfrac13(1 + \tfrac14(1 + \cdots))) \\ = \frac1{1!} + \frac 1{2!} + \frac1{3!} + \frac1{4!} + \cdots = e - 1; log 2016 2016 2016 2016 = 1 2 ( 1 + 1 2 ( 1 + 1 2 ( 1 + 1 2 ( 1 + ) ) ) ) = 1 2 1 + 1 2 2 + 1 2 3 + 1 2 4 + = 1 ; \log \sqrt{2016\sqrt{2016\sqrt{2016\sqrt{2016\cdots}}}} = \tfrac12(1 + \tfrac12(1 + \tfrac12(1 + \tfrac12(1 + \cdots)))) \\ = \frac1{2^1} + \frac1{2^2} + \frac1{2^3} + \frac1{2^4} + \cdots = 1; log 2016 2016 2016 2016 4 3 2016 2016 2016 2016 = ( e 1 ) 1 = e 2 , \therefore \log \frac{2016\sqrt{2016\sqrt[3]{2016\sqrt[4]{2016\cdots}}}}{\sqrt{2016\sqrt{2016\sqrt{2016\sqrt{2016\cdots}}}}} = (e-1) - 1 = e-2, so that x = 2 x = \boxed{-2} .

Frank Petiprin
Feb 18, 2018
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
'''Basic Idea is to approximate the  value of the Ramanujan nested radicals of the 
left side of the equation with a numerical method and them use Logs to the base e
to solve for X
Log(NR1/NR2) = Log(2016**(X+e)) = (X+e)*Log(2016) 
NR1 approx 476481.481262981
NR2 approx 2015.999999999
Ratio = NR1/NR2=236.3499411026
Solve for X   =  Log(236.3499411026)/Log(2016) - e '''  
#                   BEGIN PYTHONISTA PROGRAM ON IPAD PRO**
import math
#A LOOP OF 52 GAVE THE BEST APPROXIMATIONS TO THE NESTED RADICALS 
beg = 1
end = 52
exp = end + 1
Dprodrt = ( 2016 )**.5
Nprodrt = ( 2016 )**(1/(end  + 1))
for loop in range(  beg, end + 1, 1  ):
    Dprodrt = ( 2016*Dprodrt )**.5
    exp -= 1
    Nprodrt = (2016*Nprodrt)**(1/exp)
print('NR1: Numerator', Nprodrt)
Ratio = Nprodrt/Dprodrt
print('NR2: Denomanator', Dprodrt)
print('Ratio ',Ratio,'Loop Count', end)
Logval = ( math.log(Ratio)/math.log(2016) ) - math.exp(1)
print('Answer X', Logval)
input('Ramanujan')
#               END PROGRAM

NR1: Numerator 476481.4812629815
NR2: Denomanator 2015.999999999
Ratio  236.3499411026 Loop Count 52
Answer X -2.0

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...