2 0 1 6 2 0 1 6 2 0 1 6 2 0 1 6 2 0 1 6 ⋯ 2 0 1 6 2 0 1 6 3 2 0 1 6 4 2 0 1 6 5 2 0 1 6 ⋯ = 2 0 1 6 e + x
Find x which satisfies the above equation.
Hint : Consider the infinite sum series of e
Clarification : e ≈ 2 . 7 1 8 2 8 denotes the Euler's number .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Taking logs (base 2016):
lo g 2 0 1 6 2 0 1 6 3 2 0 1 6 4 2 0 1 6 ⋯ = 1 + 2 1 ( 1 + 3 1 ( 1 + 4 1 ( 1 + ⋯ ) ) ) = 1 ! 1 + 2 ! 1 + 3 ! 1 + 4 ! 1 + ⋯ = e − 1 ; lo g 2 0 1 6 2 0 1 6 2 0 1 6 2 0 1 6 ⋯ = 2 1 ( 1 + 2 1 ( 1 + 2 1 ( 1 + 2 1 ( 1 + ⋯ ) ) ) ) = 2 1 1 + 2 2 1 + 2 3 1 + 2 4 1 + ⋯ = 1 ; ∴ lo g 2 0 1 6 2 0 1 6 2 0 1 6 2 0 1 6 ⋯ 2 0 1 6 2 0 1 6 3 2 0 1 6 4 2 0 1 6 ⋯ = ( e − 1 ) − 1 = e − 2 , so that x = − 2 .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
|
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Nested Functions
e = 0 ! 1 + 1 ! 1 + 2 ! 1 + 3 ! 1 + 4 ! 1 + …
e = 1 + 1 + 2 1 ( 1 + 3 1 ( 1 + 4 1 ( 1 + 5 1 ( 1 + … ) ) ) )
e − 1 = 1 + 2 1 ( 1 + 3 1 ( 1 + 4 1 ( 1 + 5 1 ( 1 + … ) ) ) )
2 0 1 6 e − 1 = 2 0 1 6 1 + 2 1 ( 1 + 3 1 ( 1 + 4 1 ( 1 + 5 1 ( 1 + … ) ) ) )
2 0 1 6 e − 1 = 2 0 1 6 2 0 1 6 3 2 0 1 6 4 2 0 1 6 5 2 0 1 6 . . .
2 0 1 6 = 2 0 1 6 2 = 2 0 1 6 2 0 1 6 = 2 0 1 6 2 0 1 6 2 0 1 6 2 0 1 6 2 0 1 6 . . .
2 0 1 6 2 0 1 6 2 0 1 6 2 0 1 6 2 0 1 6 . . . 2 0 1 6 2 0 1 6 3 2 0 1 6 4 2 0 1 6 5 2 0 1 6 . . . = 2 0 1 6 e − 1 − 1
⇒ x = − 2