Ramanujan's nested radicals

Calculus Level 2

1 + 2 1 + 3 1 + = ? \sqrt{1+2\sqrt{1+3\sqrt{1+ \cdots}}} =\, ?

\infty 3 3 9 9 2 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

( x + a ) = x 2 + a 2 + 2 a x = a 2 + x ( x + 2 a ) = a 2 + x a 2 + ( x + a ) ( x + 3 a ) = a 2 + x a 2 + ( x + a ) a 2 + ( x + 2 a ) ( x + 4 a ) = a 2 + x a 2 + ( x + a ) a 2 + ( x + 2 a ) a 2 + ( x + 3 a ) . . . Now setting a=1, x=2 we get the Ramanujan’s Nested Radical (x+a) \\ =\sqrt{x^2+a^2+2ax} \\ =\sqrt{a^2+x(x+2a)} \\ =\sqrt{a^2+x\sqrt{a^2+(x+a)(x+3a)}} \\ =\sqrt{a^2+x\sqrt{a^2+(x+a)\sqrt{a^2+(x+2a)(x+4a)}}} \\ =\sqrt{a^2+x\sqrt{a^2+(x+a)\sqrt{a^2+(x+2a)\sqrt{a^2+(x+3a)\sqrt{...}}}}} \\ \text{Now setting a=1, x=2 we get the Ramanujan's Nested Radical} Try out these crazy nested radicals!

Links to study:

* Nested radical

* Click here how to solve.

Ku John
Aug 6, 2016

pls i arld posted this weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...