Ramanujan's theory

Algebra Level 3

1 + 2 1 + 3 1 + 4 1 + 5 = ? \large \sqrt{1 + 2\sqrt{1 + 3\sqrt{1 + 4\sqrt{1 + 5\sqrt{\cdots}}}}} = \, ?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The problem can be solved by Ramanujan's identity. A simplified form is as below (see Nested Functions ). The identity is true if the RHS converges.

a + b = b 2 + a b 2 + ( a + b ) b 2 + ( a + 2 b ) a+b = \sqrt{b^2+a\sqrt{b^2+(a+b)\sqrt{b^2+(a+2b) \sqrt{\cdots}}}}

Putting a = 2 a=2 and b = 1 b=1 , we have:

2 + 1 = 1 2 + 2 1 2 + ( 2 + 1 ) 1 2 + ( 2 + 2 1 ) 1 2 + ( 2 + 3 1 ) 3 = 1 + 2 1 + 3 1 + 4 1 + 5 \begin{aligned} 2+1 & = \sqrt{1^2+2\sqrt{1^2+(2+1)\sqrt{1^2+(2+2\cdot 1)\sqrt{1^2 + (2+3\cdot 1) \sqrt{\cdots}}}}} \\ \implies \boxed{3} & = \sqrt{1+2\sqrt{1+3\sqrt{1+4 \sqrt{1+5\sqrt{\cdots}}}}} \end{aligned}

Ku John
Aug 4, 2016

3=√9

3=√1+8

3=√1+2*4

3=√1+2√16

3=√1+2√1+15

3=√1+2√1+3*5

3=√1+2√1+3√25

3=√1+2√1+3√1+4*6.........

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...