Random Points On A Square

Calculus Level 5

A square with a unit length has two arbitrary points chosen inside it. What is the average distance between the two points?

If this can be represented in the form a + b + c ln ( d + e ) f \dfrac {a + \sqrt{b} + c \ln (d+\sqrt{e})}{f} , where a , b , c , d , e , f a, b, c, d, e, f are positive integers, and the fraction is simplified as far as possible, find a + b + c + d + e + f a+b+c+d+e+f .


The answer is 27.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Oct 19, 2016

The x x - and y y - coordinates of the two points are each uniformly distributed on [ 0 , 1 ] [0,1] , and all four coordinates are independent of each other. Thus the expected length is E = 0 1 0 1 0 1 0 1 ( a b ) 2 + ( c d ) 2 d a d b d c d d E \; = \; \int_0^1 \int_0^1 \int_0^1 \int_0^1 \sqrt{(a-b)^2 + (c-d)^2}\,da\,db\,dc\,dd Using the substitution u = a + b u = a+b , v = a b v = a-b , we notice that 0 1 0 1 f ( a b ) d a d b = 1 2 1 1 d v v 2 v f ( v ) d u = 1 1 ( 1 v ) f ( v ) d v \int_0^1 \int_0^1 f(a-b)\,da\,db \; = \; \tfrac12\int_{-1}^1 dv \int_{|v|}^{2-|v|} f(v)\,du \; = \; \int_{-1}^1 (1 - |v|)f(v)\,dv for any function f f , and hence E = 1 1 1 1 ( 1 u ) ( 1 w ) u 2 + w 2 d u d w = 4 0 1 0 1 ( 1 u ) ( 1 w ) u 2 + w 2 d u d w E \; = \; \int_{-1}^1 \int_{-1}^1 (1-|u|)(1-|w|)\sqrt{u^2 + w^2}\,du\,dw \; = \; 4\int_0^1 \int_0^1 (1-u)(1-w)\sqrt{u^2 + w^2}\,du\,dw But 0 1 ( 1 u ) u 2 + w 2 d u = 1 6 [ 2 w 3 + 1 + w 2 2 w 2 1 + w 2 + 3 w 2 ln ( 1 + 1 + w 2 w ) ] \int_0^1 (1-u)\sqrt{u^2+w^2}\,du \; = \; \tfrac16\left[ 2w^3 + \sqrt{1+w^2} - 2w^2\sqrt{1+w^2}+ 3w^2 \ln\left(\frac{1 + \sqrt{1+w^2}}{w}\right)\right] for any w > 0 w > 0 , and hence, integrating again, E = 2 + 2 + 5 sinh 1 1 15 = 2 + 2 + 5 ln ( 1 + 2 ) 15 E \; = \; \frac{2 + \sqrt{2} + 5\sinh^{-1}1}{15} \; = \; \frac{2 + \sqrt{2} + 5\ln\big(1 + \sqrt{2}\big)}{15} making the answer 2 + 2 + 5 + 1 + 2 + 15 = 27 2 + 2 + 5 + 1 + 2 + 15 = \boxed{27} .

Nice solution!

Sharky Kesa - 4 years, 8 months ago

These are interesting identities you have used here to come up with an elegant solution. If possible, could you explain or link to brilliant wikis (if we have them) that explain the concept behind:

0 1 0 1 f ( a b ) d a d b = 1 2 1 1 d v v 2 v f ( v ) d u = 1 1 ( 1 v ) f ( v ) d v \int_0^1 \int_0^1 f(a-b)\,da\,db \; = \; \tfrac12\int_{-1}^1 dv \int_{|v|}^{2-|v|} f(v)\,du \; = \; \int_{-1}^1 (1 - |v|)f(v)\,dv

Also clarify the symmetry that allows you to equate these:

E = 1 1 1 1 ( 1 u ) ( 1 w ) u 2 + w 2 d u d w = 4 0 1 0 1 ( 1 u ) ( 1 w ) u 2 + w 2 d u d w E \; = \; \int_{-1}^1 \int_{-1}^1 (1-|u|)(1-|w|)\sqrt{u^2 + w^2}\,du\,dw \; = \; 4\int_0^1 \int_0^1 (1-u)(1-w)\sqrt{u^2 + w^2}\,du\,dw

Andy Hayes - 4 years, 7 months ago

Log in to reply

There is a brief wiki on Multiple Integral which touches in the use of the Jacobi matrix for variable change in multiple integrals; that is what you need for the first identity. The second is easy; the integrand is an even function of both u u and w w , so he integral from 1 -1 to 1 1 is twice the integral from 0 0 to 1 1 in each variable.

Mark Hennings - 4 years, 7 months ago

The distance between two randomly selected points ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1),(x_2,y_2) is d = ( x 1 x 2 ) 2 + ( y 1 y 2 ) 2 d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2} . Now, x 1 , x 2 , y 1 , y 2 x_1,x_2,y_1,y_2 are i.i.d. U [ 0 , 1 ] \sim \mathcal{U}[0,1] , which implies that X : = x 1 x 2 , Y : = y 1 y 2 X:=x_1-x_2,Y:=y_1-y_2 are i.i.d. traingular distributed on the interval [ 1 , 1 ] [-1,1] with the density given by f ( x ) = { 1 + x , x [ 1 , 0 ] 1 x , x ( 0 , 1 ] f(x)=\left\{\begin{array}{rl} 1+x, & x\in[-1,0]\\ 1-x, & x\in(0,1] \end{array}\right. Thus the average distance is L = 1 1 1 1 x 2 + y 2 f X ( x ) f Y ( y ) d x d y L=\int_{-1}^1\int_{-1}^1 \sqrt{x^2+y^2}f_X(x)f_Y(y)dx dy Since the densities of X , Y X,Y are even functions, we can simplify the integral as L = 4 0 1 0 1 x 2 + y 2 ( 1 x ) ( 1 y ) d x d y L=4\int_{0}^1\int_0^1\sqrt{x^2+y^2}(1-x)(1-y)dxdy To evaluate the above integral, we use transformation to polar coordinates x = r cos θ , y = r sin θ x=r\cos \theta,y=r\sin \theta , and we will use the symmetry of the two parts of the square region of integration, above and below the diagonal through the origin, to get L = 8 0 π / 4 0 sec θ r r ( 1 r cos θ ) ( 1 r sin θ ) d r d θ = 8 0 π / 4 0 sec θ r 2 ( 1 r ( cos θ + sin θ ) + r 2 sin θ cos θ ) d r d θ = 8 0 π / 4 ( sec 3 θ 3 sec 4 θ 4 ( cos θ + sin θ ) + sec 5 θ 5 sin θ cos θ ) d θ = 2 3 0 π / 4 sec 3 θ d θ 2 5 0 π / 4 sin θ sec 4 θ d θ = 2 3 I 1 2 5 I 2 L=8\int_0^{\pi/4}\int_0^{\sec\theta}r\cdot r(1-r\cos\theta)(1-r\sin\theta)dr d\theta\\=8\int_0^{\pi/4}\int_0^{\sec\theta} r^2(1-r(\cos\theta+\sin\theta)+r^2\sin\theta\cos\theta)drd\theta\\=8\int_0^{\pi/4}\left(\frac{\sec^3\theta}{3}-\frac{\sec^4\theta}{4}(\cos\theta+\sin\theta)+\frac{\sec^5\theta}{5}\sin\theta\cos\theta\right)d\theta\\=\frac{2}{3}\int_0^{\pi/4}\sec^3\theta d\theta-\frac{2}{5}\int_0^{\pi/4}\sin\theta \sec^4\theta d\theta\\=\frac{2}{3}I_1-\frac{2}{5}I_2 where I 1 = 0 π / 4 sec 3 θ d θ = 0 1 1 + x 2 d x = 1 2 ( 2 + ln ( 1 + 2 ) ) I_1=\int_0^{\pi/4}\sec^3\theta d\theta\\=\int_0^1\sqrt{1+x^2} dx=\frac{1}{2}\left(\sqrt{2}+\ln(1+\sqrt{2})\right) I 2 = 0 π / 4 sin θ sec 4 θ d θ = 0 1 x 1 + x 2 d x = 1 3 ( 2 2 1 ) I_2=\int_0^{\pi/4}\sin\theta\sec^4\theta d\theta\\=\int_0^1 x\sqrt{1+x^2}dx\\=\frac{1}{3}(2\sqrt{2}-1) Thus, I = 2 + 2 + 5 ln ( 1 + 2 ) 15 I=\frac{2+\sqrt{2}+5\ln(1+\sqrt{2})}{15} Giving the answer 27 \boxed{27} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...