Foundations, part 9

Algebra Level 3

z 86 + z 175 + z 289 + z 918 + z 2017 \large z^{86} + z^{175} + z^{289} + z^{918} + z^{2017}

If z \large z is a non-real root of z 7 = 1 \large z^7={-1} , then find the value of above expression.

For more , try this set .


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

χ = z 86 + z 175 + z 289 + z 918 + z 2017 = z 14 × 6 + 2 + z 14 × 12 + 7 + z 14 × 20 + 9 + z 14 × 65 + 8 + z 14 × 144 + 1 Note that z = 1 7 z 7 = 1 z 14 = 1 = z 2 + z 7 + z 9 + z 8 + z 1 = z 2 + z 7 + z 7 + 2 + z 7 + 1 + z 1 Note that z 7 = 1 = z 2 + 1 z 2 z 1 + z 1 = 1 \begin{aligned} \chi & = z^{86} + z^{175} + z^{289} + z^{918} + z^{2017} \\ & = z^{{\color{#3D99F6}14} \times 6+2} + z^{{\color{#3D99F6}14} \times12 +7} + z^{{\color{#3D99F6}14} \times 20+9} + z^{{\color{#3D99F6}14} \times 65+8} + z^{{\color{#3D99F6}14} \times 144+1} & \small \color{#3D99F6} \text{Note that }z = \sqrt[7]{-1} \implies z^7 = -1 \implies z^{14} = 1 \\ & = z^2 + z^7 + z^9 + z^8 + z^1 \\ & = z^2 + z^{\color{#3D99F6}7} + z^{{\color{#3D99F6}7}+2} + z^{{\color{#3D99F6}7}+1} + z^1 & \small \color{#3D99F6} \text{Note that }z^7 = -1 \\ & = z^2 + {\color{#3D99F6}-1} {\color{#3D99F6}-}z^2 {\color{#3D99F6}-}z^1 + z^1 \\ & = \boxed{-1} \end{aligned}

Ravneet Singh
May 6, 2017

Since z \large z is a non-real root of 1 7 \large \sqrt[7]{-1} it implies z 7 = 1 \large z^7 = -1

Now z 86 = ( z 7 ) 12 × z 2 = ( 1 ) 12 × z 2 = z 2 \large z^{86} = (z^7)^{12}\times z^2 = (-1)^{12}\times z^2 = z^2

z 175 = ( z 7 ) 25 = ( 1 ) 25 = 1 \large z^{175} = (z^7)^{25} = (-1)^{25} = -1

z 289 = ( z 7 ) 41 × z 2 = ( 1 ) 41 × z 2 = z 2 \large z^{289} = (z^7)^{41}\times z^2 = (-1)^{41}\times z^2 = -z^2

z 918 = ( z 7 ) 131 × z = ( 1 ) 131 × z = z \large z^{918} = (z^7)^{131}\times z = (-1)^{131}\times z = -z

z 2017 = ( z 7 ) 288 × z = ( 1 ) 288 × z = z \large z^{2017} = (z^7)^{288}\times z = (-1)^{288}\times z = z

Adding all of these will get z 2 + ( 1 ) + ( z 2 ) + ( z ) + z = 1 \large z^2 + (-1) + (-z^2) + (-z) + z = \boxed {-1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...