Is it a unique triplet?

Algebra Level 5

For some positive integers a a , b b , and c c , we have 2 + 3 3 = a + b + c 2 + 3 3 2 + 3 3 \large 2+\sqrt[3]{3}=a+\frac{-b+\dfrac{c}{2+\sqrt[3]{3}}}{2+\sqrt[3]{3}} Find a + b + c a+b+c .


The answer is 29.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Manuel Kahayon
Jun 12, 2016

Let x = 2 + 3 3 x = 2+\sqrt[3]{3} . Therefore, x 2 = 3 3 x-2 = \sqrt[3]{3} , ( x 2 ) 3 = 3 = x 3 6 x 2 + 12 x 8 (x-2)^3 = 3= x^3-6x^2+12x-8 .

x 3 6 x 2 + 12 x = 11 x^3-6x^2+12x = 11

x 2 6 x = 12 + 11 x x^2-6x = -12+ \frac{11}{x}

x = 6 + 12 + 11 x x \large x = 6+\frac{-12+ \frac{11}{x}}{x}

Therefore, a = 6 , b = 12 , c = 11 a = 6, b = 12, c = 11 . Our answer is then 6 + 12 + 11 = 29 6+12+11 = \boxed{29} .

Hey but what's so "level 5" about this question? (Except for your solution which is cool !!! +1) I think the question is over rated

abc xyz - 5 years ago

Log in to reply

Sorta agree XD... Too overrated for a randomly thought problem

Manuel Kahayon - 5 years ago

Nice one. Really brilliant solution

Shree Ganesh - 5 years ago
Chew-Seong Cheong
Jun 13, 2016

( 2 + 3 3 ) 3 = 8 + 12 3 3 + 6 3 3 2 + 3 = 11 + 6 3 3 ( 2 + 3 3 ) Dividing both sides by 2 + 3 3 ( 2 + 3 3 ) 2 = 6 3 3 + 11 2 + 3 3 = 6 ( 2 + 3 3 ) 12 + 11 2 + 3 3 Dividing both sides by 2 + 3 3 2 + 3 3 = 6 + 12 + 11 2 + 3 3 2 + 3 3 \begin{aligned} \left(2 + \sqrt[3]{3}\right)^3 & = 8 + 12 \sqrt[3]{3} + 6 \sqrt[3]{3}^2 + 3 \\ & = 11 + 6\sqrt[3]{3} (2 + \sqrt[3]{3}) \quad \quad \small \color{#3D99F6}{\text{Dividing both sides by }2 + \sqrt[3]{3}} \\ \left(2 + \sqrt[3]{3}\right)^2 & = 6\sqrt[3]{3} + \frac{11}{2+\sqrt[3]{3}} \\ & = 6(2+\sqrt[3]{3}) - 12 + \frac{11}{2+\sqrt[3]{3}} \quad \quad \small \color{#3D99F6}{\text{Dividing both sides by }2 + \sqrt[3]{3}} \\ 2 + \sqrt[3]{3} & = 6 + \frac{ - 12 + \dfrac{11}{2+\sqrt[3]{3}}}{2+\sqrt[3]{3}} \end{aligned}

a + b + c = 6 + 12 + 11 = 29 \implies a + b + c = 6+12+11 = \boxed{29}

Hung Woei Neoh
Jun 13, 2016

2 + 3 3 = a + b + c 2 + 3 3 2 + 3 3 ( 2 + 3 3 ) 2 = a ( 2 + 3 3 ) b + c 2 + 3 3 ( 2 + 3 3 ) 3 = a ( 2 + 3 3 ) 2 b ( 2 + 3 3 ) + c 8 + 12 3 3 + 6 9 3 + 3 = a ( 4 + 4 3 3 + 9 3 ) 2 b 3 3 b + c 11 + 12 3 3 + 6 9 3 = 4 a + 4 3 3 a + 9 3 a 2 b 3 3 b + c 11 + 12 3 3 + 6 9 3 = ( 4 a 2 b + c ) + ( 4 a b ) 3 3 + ( a ) 9 3 2+\sqrt[3]{3} = a + \dfrac{-b+\frac{c}{2+\sqrt[3]{3}}}{2+\sqrt[3]{3}}\\ (2+\sqrt[3]{3})^2 = a(2+\sqrt[3]{3}) - b + \dfrac{c}{2+\sqrt[3]{3}}\\ (2+\sqrt[3]{3})^3 = a(2+\sqrt[3]{3})^2 -b(2+\sqrt[3]{3}) + c\\ 8+12\sqrt[3]{3} + 6\sqrt[3]{9} + 3 = a(4+4\sqrt[3]{3} + \sqrt[3]{9}) - 2b - \sqrt[3]{3}b + c\\ 11+12\sqrt[3]{3}+6\sqrt[3]{9} = 4a+ 4\sqrt[3]{3}a + \sqrt[3]{9}a - 2b - \sqrt[3]{3}b + c\\ 11+12\sqrt[3]{3}+6\sqrt[3]{9} = (4a-2b+c) + (4a-b)\sqrt[3]{3} + (a)\sqrt[3]{9}

By comparison,

a = 6 4 a b = 12 4 ( 6 ) b = 12 b = 24 12 = 12 4 a 2 b + c = 11 4 ( 6 ) 2 ( 12 ) + c = 11 c = 11 a=6\\ 4a-b = 12 \implies 4(6) - b = 12 \implies b =24-12=12\\ 4a-2b+c=11 \implies 4(6)-2(12)+c = 11 \implies c=11

Therefore, a + b + c = 6 + 12 + 11 = 29 a+b+c = 6+12+11 = \boxed{29}

So many solutions for some problem I just made up!

Manuel Kahayon - 5 years ago
Philip Lamkin
Jun 14, 2016

2 + 3 3 = a + b + c 2 + 3 3 2 + 3 3 2 +\sqrt[3]{3} = a+\frac{-b+\frac{c}{2+\sqrt[3]{3}}}{2+\sqrt[3]{3}}

( 2 a ) + 3 3 = b + c 2 + 3 3 2 + 3 3 (2-a)+\sqrt[3]{3} = \frac{-b+\frac{c}{2+\sqrt[3]{3}}}{2+\sqrt[3]{3}}

( ( 2 a ) + 3 3 ) ( 2 + 3 3 ) = b + c 2 + 3 3 \left((2-a)+\sqrt[3]{3}\right)\left(2+\sqrt[3]{3}\right) = -b+\frac{c}{2+\sqrt[3]{3}}

( 4 2 a + b ) + ( 4 a ) 3 3 + 9 3 = c 2 + 3 3 (4-2a+b)+(4-a)\sqrt[3]{3}+\sqrt[3]{9} = \frac{c}{2+\sqrt[3]{3}}

( ( 4 2 a + b ) + ( 4 a ) 3 3 + 9 3 ) ( 2 + 3 3 ) = c \left((4-2a+b)+(4-a)\sqrt[3]{3}+\sqrt[3]{9}\right)\left(2+\sqrt[3]{3}\right) = c

( 8 4 a + 2 b ) + ( 12 4 a + b ) 3 3 + ( 6 a ) 9 3 + 3 = c (8-4a+2b)+(12-4a+b)\sqrt[3]{3}+(6-a)\sqrt[3]{9}+3 = c

Now we know c Z c \in \mathrm{Z} , so 12 4 a + b = 0 12-4a+b=0 and 6 a = 0 6-a=0

This gives us that a = 6 , b = 12 , a=6, b=12, and then plugging back in gives us c = 11 c=11

Thus a + b + c = 29 a+b+c = \boxed{29}

K T
Aug 13, 2020

With r = 3 3 r= \sqrt[3]{3} and x = 2 + r x=2+r we can rewrite the equality as x 3 a x 2 + b x c = 0 x^3-ax^2+bx-c=0 11 + 12 r + 6 r 2 a ( 4 + 4 r + r 2 ) + b ( 2 + r ) c = 0 11+12r+6r^2-a(4+4r+r^2)+b(2+r)-c=0 11 4 a + 2 b c + r ( 12 4 a + b = 0 ) + r 2 ( 6 a ) = 0 11-4a+2b-c +r (12-4a+b=0)+r^2 (6-a)=0 Because r r and r 2 r^2 are irrational, this can only happen when

  • 11 4 a + 2 b c = 0 11-4a+2b-c=0
  • 12 4 a + b = 0 12-4a+b=0
  • 6 a = 0 6-a=0

so that a = 6 , b = 12 , c = 11 a=6, b=12, c=11 and the answer is 6 + 12 + 11 = 29 6+12+11=\boxed{29}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...