Random Problems

Calculus Level 5

Let I a = 0 1 x a ( ln x ) 3 d x \displaystyle I_a=\int_{0}^{1} x^a(\ln x)^3 \, dx . Calculate n = 0 I n \displaystyle \sum_{n=0}^{\infty}I_n .

Give your answer to 3 decimal places.


The answer is -6.493.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Lemma : 0 1 x a ( l n x ) b d x = ( 1 ) b b ! ( a + 1 ) b + 1 \displaystyle \text{Lemma : } \int_{0}^{1} x^a(lnx)^bdx=\frac{(-1)^b b!}{(a+1)^{b+1}}

Proof : Let I ( a , b ) = 0 1 x a ( l n x ) b d x \displaystyle I(a,b)=\int_{0}^{1} x^a(lnx)^bdx , Put l n x = y lnx=y and the integral turns,

I ( a , b ) = 0 e y ( a + 1 ) y b d y \displaystyle I(a,b)=\int_{\infty}^{0} e^{y(a+1)}y^bdy , Put y ( a + 1 ) = u y(a+1)=-u and the integral turns,

I ( a , b ) = ( 1 ) b ( a + 1 ) b + 1 0 e u u ( b + 1 ) b d u = ( 1 ) b Γ ( b + 1 ) ( a + 1 ) b + 1 = ( 1 ) b b ! ( a + 1 ) b + 1 \displaystyle I(a,b)=\frac{(-1)^b}{(a+1)^{b+1}}\int_{0}^{\infty}e^{-u}u^{(b+1)-b}du=\frac{(-1)^b\Gamma(b+1)}{(a+1)^{b+1}}=\frac{(-1)^bb!}{(a+1)^{b+1}}

We have b = 3 b=3 , so n = 0 I n = n = 0 6 ( n + 1 ) 4 \displaystyle \sum_{n=0}^{\infty} I_n=\sum_{n=0}^{\infty} \frac{-6}{(n+1)^4}

Therefore, n = 0 I n = 6 ζ ( 4 ) = 6 π 4 90 = π 4 15 6.493 \displaystyle \sum_{n=0}^{\infty} I_n=-6\zeta(4)=-6\frac{\pi^4}{90}=-\frac{\pi^4}{15}\approx -6.493

There is a simpler proof.Consider the integral of x a x^a from 0 to 1 (which is equal to 1 / ( a + 1 ) 1/(a+1) ) and differentiate it with respect to 'a' three times.You will get an expression in terms of a for I ( a ) I(a) .

Indraneel Mukhopadhyaya - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...