Random reals.

Algebra Level 4

a , b , c a,b,c are positive real numbers such that 1 b + c + 1 c + a + 1 a + b = 1 \dfrac{1}{b+c} + \dfrac{1}{c+a} + \dfrac{1}{a+b} = 1 . If the minimum value of 1 a 5 + 1 b 5 + 1 c 5 \dfrac{1}{a^5} + \dfrac{1}{b^5} + \dfrac{1}{c^5} can be written as p q \dfrac{p}{q} where p p and q q are positive integers with gcd(p,q) = 1 \text{gcd(p,q)}=1 , find ( p + q ) (p+q)


The answer is 113.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Kartik Sharma
Dec 29, 2014

Nice problem! Well, I did it in a rather 'wrong ' way(I don't know if this is correct or not).

1 b + c + 1 c + a + 1 a + b = 1 \frac{1}{b+c} + \frac{1}{c+a} + \frac{1}{a+b} = 1

Multiplying a + b + c a+b+c ,

a b + c + b c + a + c b + a + 3 = a + b + c \frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{b+a} + 3 = a+b+c

Equating the minimum of both the sides and then using Nesbitt's inequality,

3 2 + 3 = 3 a b c 3 \frac{3}{2} + 3 = 3\sqrt[3]{abc}

a b c = 3 2 3 abc = {\frac{3}{2}}^{3}

Now, using AM-GM in 2nd equation,

1 a 5 + 1 a 5 + 1 a 5 3 1 a b c 5 3 \frac{1}{{a}^{5}} + \frac{1}{{a}^{5}} + \frac{1}{{a}^{5}} \geq 3\sqrt[3]{\frac{1}{{abc}^{5}}}

Putting value of abc here, we get

2 5 3 4 \geq \frac{{2}^{5}}{{3}^{4}}

32 81 \geq \frac{32}{81}

Aaaaa Bbbbb
Apr 16, 2014

It is easy to prove that: 1 ( a t ) 5 + 1 ( a + t ) 5 > 2 a 5 : t > 0 , a > 0 \frac{1}{(a-t)^{5}} + \frac{1}{(a+t)^{5}} > \frac{2}{a^{5}}: t>0, a>0 So 1 a 5 + 1 b 5 + 1 c 5 \frac{1}{a^{5}}+\frac{1}{b^{5}}+\frac{1}{c^{5}} is maximum when: a = b = c = 3 2 a=b=c=\frac{3}{2} M I N ( 1 a 5 + 1 b 5 + 1 c 5 ) = 32 81 = p q p + q = 113 MIN(\frac{1}{a^{5}}+\frac{1}{b^{5}}+\frac{1}{c^{5}})=\frac{32}{81}=\frac{p}{q} \Rightarrow p+q=\boxed{113}

Introduce x = 1 a x=\dfrac{1}{a} , y = 1 b y=\dfrac{1}{b} , z = 1 c z=\dfrac{1}{c} .

Then 1 a + b + 1 b + c + 1 c + a \dfrac{1}{a+b} + \dfrac{1}{b+c} + \dfrac{1}{c+a} becomes x y x + y + y z y + z + z x z + x \dfrac{xy}{x+y} + \dfrac{yz}{y+z} + \dfrac{zx}{z+x} . We know ( x + y ) 2 4 x y ( x + y ) 4 x y x + y (x+y)^2 \geq 4xy \implies \dfrac{(x+y)}{4} \geq \dfrac{xy}{x+y} . Continuing this way and adding we get 2 x + y + z 4 x y x + y + y z y + z + z x z + x = 1 2 \cdot \dfrac{x+y+z}{4} \geq \dfrac{xy}{x+y} + \dfrac{yz}{y+z} + \dfrac{zx}{z+x} = 1 . Therefore we have ( x + y + z ) 2 (x+y+z) \geq 2 with equality when x = y = z = 2 3 x=y=z=\frac{2}{3} . Now, We use power mean inequality to arrive at, x 5 + y 5 + z 5 3 ( x + y + z ) 5 3 5 x 5 + y 5 + z 5 ( x + y + z ) 5 3 4 2 5 3 5 = 32 81 \dfrac{x^5 + y^5 + z^5}{3} \geq \dfrac{(x+y+z)^5}{3^5} \implies x^5 + y^5 + z^5 \geq \dfrac{(x+y+z)^5}{3^4} \geq \dfrac{2^5}{3^5} = \boxed{\dfrac{32}{81}} . Both the inequalitites satisfy the inequality case when x = y = z = 2 / 3 x=y=z=2/3 and it indeed gives the value equal to 32 81 \dfrac{32}{81} .

Sagnik Saha - 7 years, 1 month ago

The minimum value of the second equation would only be reached if a = b = c a=b=c . Thus, the first equation would become 3 2 a \frac{3}{2a} = 1

Thus, a=b=c= 3 2 \frac{3}{2}

The second equation boils down to 2 5 3 4 \frac{2^{5}}{3^{4}} = 32 81 \frac{32}{81}

Thus the answers is 32+81= 113 \boxed{113}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...