Random Triangle

Consider two points on a Cartesian coordinate system, A ( 2 , 1 ) \,\text{A}(-2,1) and B ( 0 , 3 ) \,\text{B}(0,-3) . Point C \,\text{C} is then drawn such that A C B C \overrightarrow{AC}\perp \overrightarrow{BC} . The expected area of Δ ABC \Delta\text{ABC} can be expressed as a b π \;\frac{a}{b\pi} , where a \,a and b \,b are positive integers. Calculate a + b \,a+b .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jatin Yadav
Mar 1, 2014

Clearly, the locus of C C would be a circle. Consider the figure shown. The probability that A O C = θ = d θ 2 π \angle AOC = \theta = \frac{d \theta}{2 \pi} .

As median divides a triangle in two equal parts in terms of area.

Required area = A = 2 a r ( A O C ) = 2 × 1 2 R × R sin θ = R 2 sin θ A = 2ar(\triangle AOC) = 2 \times \frac{1}{2} R \times R |\sin \theta| = R^2 | \sin \theta|

Hence, expected area = A d P = 0 2 π R 2 sin θ d θ 2 π \displaystyle \int A dP = \displaystyle \int_{0}^{2 \pi} R^2 |\sin \theta| \frac{d \theta}{2 \pi}

= 2 R 2 π = d 2 2 π \frac{2R^2}{\pi} = \frac{d^2}{2 \pi}

Here, d 2 = 2 2 + 4 2 = 20 d^2 = 2^2 + 4^2 = 20

Hence, expected area = 20 2 π = 10 π \frac{20}{2 \pi} = \frac{10}{\pi}

Nicola Mignoni
Apr 20, 2018

Without loss of generality, we can consider A ( 20 2 , 0 ) A \big(-\frac{\sqrt{20}}{2},0 \big) and B ( 20 2 , 0 ) B\big(\frac{\sqrt{20}}{2}, 0\big) . Being C ( x , y ) C(x,y) and A C A B AC \perp AB , we have that

( x 20 2 , y ) ( x + 20 2 , y ) = 0 x 2 + y 2 = 5 \displaystyle \bigg(x-\frac{\sqrt{20}}{2}, y\bigg)\cdot \bigg(x+\frac{\sqrt{20}}{2},y \bigg)=0 \hspace{5pt} \Longrightarrow \hspace{5pt} x^2+y^2=5

that is, clearly, a circumference. It can be also written as

c ( θ ) = ( 20 2 cos θ , 20 2 sin θ ) , θ [ 0 , 2 π ] \displaystyle c(\theta)=\bigg( \frac{\sqrt{20}}{2}\cos{\theta}, \frac{\sqrt{20}}{2}\sin{\theta}\bigg), \hspace{5pt} \theta \in [0, 2\pi] .

The PDF is simply f ( θ ) = 1 2 π \displaystyle f(\theta)=\frac{1}{2\pi} . The area A A of the triangle is

A ( θ ) = 1 2 20 20 2 sin θ = 5 sin θ \displaystyle A(\theta)=\frac{1}{2} \cdot \sqrt{20} \cdot \frac{\sqrt{20}}{2} |\sin{\theta}|=5|\sin{\theta}|

where

sin θ = { sin θ , for 0 θ π sin θ , for π < θ 2 π \displaystyle |\sin{\theta}|=\begin{cases} \sin{\theta}, & \text{for } 0 \leq \theta \leq \pi \\[3pt] -\sin{\theta}, & \text{for } \pi < \theta \leq 2\pi \end{cases} .

Expected value can be calculated

E [ A ( θ ) ] = 0 2 π A ( θ ) f ( θ ) d θ = 0 2 π 5 2 π sin θ d θ = 0 π 5 2 π sin θ d θ + π 2 π 5 2 π sin θ d θ = 10 π \displaystyle \mathbb{E}[A(\theta)]=\int_{0}^{2\pi} A(\theta) f(\theta) d\theta =\int_{0}^{2\pi} \frac{5}{2\pi} |\sin{\theta}| d\theta =\int_{0}^{\pi} \frac{5}{2\pi} \sin{\theta} d\theta + \int_{\pi}^{2\pi} -\frac{5}{2\pi} \sin{\theta} d\theta=\frac{10}{\pi}

Eventually

a = 10 a=10 , b = 1 b=1 , a + b = 11 a+b=\boxed{11}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...