Random Trigonometry that we do not need in daily life

Geometry Level 3

Compute 1 c o s 2 1 0 o + 1 s i n 2 2 0 o + 1 s i n 2 4 0 o 1 c o s 2 4 5 o \frac{1}{cos^210^o}+\frac{1}{sin^220^o}+\frac{1}{sin^240^o}-\frac{1}{cos^245^o} without a calculator (Please although I know that won't happen)(VMO 1981)


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hugh Sir
Jun 12, 2014

Consider the double-angle formula

s i n 2 A = 2 s i n A c o s A sin \space 2A = 2sin \space A \space cos \space A

c o s 2 A = 2 c o s 2 A 1 cos \space 2A = 2cos^{2} A - 1

We have

1 c o s 2 1 0 = 1 s i n 2 8 0 \frac{1}{cos^{2} 10^{\circ}} = \frac{1}{sin^{2} 80^{\circ}}

1 s i n 2 2 0 = 4 c o s 2 2 0 s i n 2 4 0 = 2 ( 1 + c o s 4 0 ) s i n 2 4 0 = 2 ( 1 + c o s 4 0 ) 4 c o s 2 4 0 s i n 2 8 0 \frac{1}{sin^{2} 20^{\circ}} = \frac{4 cos^{2} 20^{\circ}}{sin^{2} 40^{\circ}} = \frac{2(1+cos \space 40^{\circ})}{sin^{2} 40^{\circ}} = \frac{2(1+cos \space 40^{\circ}) \space\cdot\space 4 cos^{2} 40^{\circ}}{sin^{2} 80^{\circ}}

1 s i n 2 4 0 = 4 c o s 2 4 0 s i n 2 8 0 \frac{1}{sin^{2} 40^{\circ}} = \frac{4 cos^{2} 40^{\circ}}{sin^{2} 80^{\circ}}

Then

1 c o s 2 1 0 + 1 s i n 2 2 0 + 1 s i n 2 4 0 = 1 + ( 3 + 2 c o s 4 0 ) 4 c o s 2 4 0 c o s 2 1 0 \frac{1}{cos^{2} 10^{\circ}} + \frac{1}{sin^{2} 20^{\circ}} + \frac{1}{sin^{2} 40^{\circ}} = \frac{1+(3+2cos \space 40^{\circ}) \space\cdot\space 4 cos^{2} 40^{\circ}}{cos^{2} 10^{\circ}}

Now consider the numerator

1 + ( 3 + 2 c o s 4 0 ) 4 c o s 2 4 0 1+(3+2cos \space 40^{\circ}) \cdot 4 cos^{2} 40^{\circ}

= 1 + ( 3 + 2 c o s 4 0 ) 2 ( 1 + c o s 8 0 ) = 1+(3+2cos \space 40^{\circ}) \cdot 2(1+ cos \space 80^{\circ})

= 1 + ( 6 + 4 c o s 4 0 + 6 c o s 8 0 + 4 c o s 4 0 c o s 8 0 ) = 1+(6+4cos \space 40^{\circ}+6cos \space 80^{\circ}+4cos \space 40^{\circ}cos \space 80^{\circ})

= 1 + 6 + 4 c o s 4 0 + 6 c o s 8 0 + 2 ( c o s 12 0 + c o s 4 0 ) = 1+6+4cos \space 40^{\circ}+6cos \space 80^{\circ}+2(cos \space 120^{\circ}+cos \space 40^{\circ})

= 6 + 6 c o s 4 0 + 6 c o s 8 0 = 6+6cos \space 40^{\circ}+6cos \space 80^{\circ}

= 6 + 6 ( 2 c o s 6 0 c o s 2 0 ) = 6+6 \cdot (2cos \space 60^{\circ}cos \space 20^{\circ})

= 6 ( 1 + c o s 2 0 ) = 6(1+cos \space 20^{\circ})

= 12 c o s 2 1 0 = 12cos^{2} 10^{\circ}

Therefore,

1 c o s 2 1 0 + 1 s i n 2 2 0 + 1 s i n 2 4 0 1 c o s 2 4 5 = 12 2 = 10 \frac{1}{cos^{2} 10^{\circ}} + \frac{1}{sin^{2} 20^{\circ}} + \frac{1}{sin^{2} 40^{\circ}} - \frac{1}{cos^{2} 45^{\circ}} = 12-2 = 10

An AWESOME one!!

Rakshit Joshi - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...