Range of a Three Variable Fun-ction !!

Algebra Level 5

I f t h e r a n g e o f a t h r e e v a r i a b l e f u n c t i o n f ( x , y , z ) = x y + y z + x z x 2 + y 2 + z 2 c a n b e w r i t t e n a s [ a , b ] . F i n d a + b . If\quad the\quad range\quad of\quad a\quad three\quad variable\quad function\\ \quad \quad \quad \quad \quad \quad \quad \boxed { f\left( x,y,z \right) \quad =\quad \frac { xy+yz+xz }{ { x }^{ 2 }+{ y }^{ 2 }+{ z }^{ 2 } } } \quad \\ can\quad be\quad written\quad as\quad \left[ a,b \right] .\quad Find\quad a+b.\\

Note: ( a , b , c ) ( 0 , 0 , 0 ) (a, b, c) \neq (0, 0, 0) . The values could be negative.


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Otto Bretscher
Sep 12, 2015

For the sake of variety, let me submit a geometrical solution; I like to see what I am doing.

Using the dot product, we can write f ( x , y , z ) = ( x , y , z ) ( y , z , x ) ( x , y , z ) 2 = cos ( θ ) f(x,y,z)=\frac{(x,y,z)\cdot(y,z,x)}{||(x,y,z)||^2}=\cos(\theta) , where θ \theta is the angle between the vectors ( x , y , z ) (x,y,z) and ( y , z , x ) (y,z,x) . Now ( y , z , x ) (y,z,x) is obtained by rotating ( x , y , z ) (x,y,z) through 2 π / 3 2\pi/3 about the line spanned by ( 1 , 1 , 1 ) (1,1,1) , a permutation of the axes. Thus 0 θ 2 π / 3 0\leq\theta\leq2\pi/3 and [ a , b ] = [ cos ( 2 π / 3 ) , cos ( 0 ) ] = [ 1 / 2 , 1 ] . [a,b]=[\cos(2\pi/3),\cos(0)]=[-1/2,1]. Finally, a + b = 0.5 a+b=\boxed{0.5} .

Moderator note:

That's a really nice interpretation with the dot product, relating it to the cosine of the angle between these vectors.

Anupam Khandelwal
Sep 12, 2015

W e k n o w t h a t : ( x + y + z ) 2 = ( x 2 + y 2 + z 2 + 2 x y + 2 y z + 2 x z ) 0 x y + y z + x z x 2 + y 2 + z 2 1 2 . . . . . . . . . . . ( i ) N o w : x 2 + y 2 + z 2 x y y z x z = 1 2 ( ( x y ) 2 + ( y z ) 2 + ( x z ) 2 ) 0 x y + y z + x z x 2 + y 2 + z 2 1 . . . . . . . . . . . . . ( i i ) B y ( i ) a n d ( i i ) w e c a n s a y t h a t r a n g e o f f ( x , y , z ) i s [ 1 2 , 1 ] a + b = 0.5 We\quad know\quad that:\\ { \left( x+y+z \right) }^{ 2 }=\left( { x }^{ 2 }+{ y }^{ 2 }+{ z }^{ 2 }+2xy+2yz+2xz \right) \quad \ge \quad 0\\ \Rightarrow \quad \frac { xy+yz+xz }{ { x }^{ 2 }+{ y }^{ 2 }+{ z }^{ 2 } } \ge \quad -\frac { 1 }{ 2 } \quad ...........(i)\\ Now:\\ { x }^{ 2 }+{ y }^{ 2 }+{ z }^{ 2 }-xy-yz-xz=\cfrac { 1 }{ 2 } \left( { \left( x-y \right) }^{ 2 }{ +\left( y-z \right) }^{ 2 }+{ \left( x-z \right) }^{ 2 } \right) \quad \ge \quad 0\\ \Rightarrow \frac { xy+yz+xz }{ { x }^{ 2 }+{ y }^{ 2 }+{ z }^{ 2 } } \le \quad 1\quad \quad \quad \quad .............(ii)\\ By\quad (i)\quad and\quad (ii)\quad we\quad can\quad say\quad that\quad range\quad of\quad \\ f(x,y,z)\quad is\quad \left[ \frac { -1 }{ 2 } ,1 \right] \\ \therefore \quad \boxed { \quad a+b\quad =\quad 0.5\quad }

Arjen Vreugdenhil
Sep 26, 2015

SInce ( x + y + z ) 2 = ( x 2 + y 2 + z 2 ) + 2 ( x y + y z + z x ) , (x+y+z)^2 = (x^2+y^2+z^2)+2(xy+yz+zx), the given function is equal to f ( x , y , z ) = 1 2 ( ( x + y + z ) 2 x 2 + y + 2 + z 2 1 ) . f(x,y,z) = \frac12\left(\frac{(x+y+z)^2}{x^2+y+2+z^2}-1\right). Interpreting R 2 = x 2 + y 2 + z 2 R^2 = x^2+y^2+z^2 as the square radius of a sphere centered at zero, and x + y + z x+y+z as the dot product of a vector lying on that sphere with 1 , 1 , 1 1, 1, 1 .

Maximum value: Choose vector on the sphere parallel to 1 , 1 , 1 1, 1, 1 . The coordinates are x = y = z = ± 1 3 3 R x=y=z=\pm\tfrac13\sqrt3R and we find x + y + z = 3 R . |x + y + z| = \sqrt 3R.

Minimum value: Choose vectors on the sphere perpendicular to 1 , 1 , 1 1, 1, 1 . There are infinitely many such vectors (lying on a ring). They satisfy x + y + z = 0 |x + y + z| = 0 .

Substituting the minimum and maximum values of x + y + z |x+y+z| into the equation, we find that f f lies between 1 2 ( ( 3 ) 2 1 ) = 1 \tfrac12((\sqrt3)^2-1) = 1 (max) and 1 2 ( 0 2 1 ) = 1 2 \tfrac12(0^2-1) = -\tfrac12 (min).

Aakash Khandelwal
Oct 17, 2015

Sorry but i think that this question is overrated. It should be of level 3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...