Range of the function

Algebra Level 4

If f ( x ) = 2 x 2 1 x 1 f(x)=2\left|x^2-1\right|-x-1 , where 0 x 3 2 0\le x\le\dfrac{3}{2} , find the range of f ( x ) f(x) .


This is a part of the Set .

2 f ( x ) 1 -2\le f(x)\le 1 3 f ( x ) 1 -3\le f(x)\le 1 2 f ( x ) 2 -2\le f(x)\le 2 2 f ( x ) 3 2 -2\le f(x)\le \dfrac{3}{2} 3 f ( x ) 3 2 -3\le f(x)\le\dfrac{3}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We have: f ( x ) = { 2 ( 1 x 2 ) x 1 , 0 x 1 2 ( x 2 1 ) x 1 , 1 x 3 2 f(x)=\left\{\begin{array}{l}2(1-x^2)-x-1&,0\le x\le1\\2(x^2-1)-x-1&,1\le x\le\dfrac{3}{2}\end{array}\right.

Or f ( x ) = { 2 x 2 x + 1 , 0 x < 1 2 x 2 x 3 , 1 x 3 2 \qquad\; f(x)=\left\{\begin{array}{l}-2x^2-x+1&,0\le x<1\\2x^2-x-3&,1\le x\le\dfrac{3}{2}\end{array}\right.

We have the function g = 2 x 2 x + 1 g=-2x^2-x+1 decreases on [ 0 ; 1 ) \left[0;1\right) and we get 2 f ( x ) 1 -2\le f(x)\le 1 with 0 x < 1 0\le x<1 .

Moreover, the function h = 2 x 2 x 3 h=2x^2-x-3 increases on [ 1 ; 3 2 ] \left[1;\dfrac{3}{2}\right] , which implies 2 f ( x ) 0 -2\le f(x)\le 0 with 1 x 3 2 1\le x\le\dfrac{3}{2} .

So, the range of f ( x ) f(x) on the interval [ 0 ; 3 2 ] \left[0;\dfrac{3}{2}\right] is 2 f ( x ) 1 \boxed{-2\le f(x)\le 1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...