Range of trigonometric expression

Geometry Level 2

As x x ranges over all real values, what is the range of

A = sin 4 x + cos 2 x ? A=\sin^4x+\cos^2x?

If you're looking to skyrocket your preparation for JEE-2015, then go for solving this set of questions .
3 4 A 1 \frac{3}{4} \leq A \leq 1 1 A 2 1 \leq A \leq 2 3 4 A 13 16 \frac{3}{4} \leq A \leq \frac{13}{16} 13 16 A 1 \frac{13}{16} \leq A \leq 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Method 1: We have that A = sin 4 ( x ) + cos 2 ( x ) = A = \sin^{4}(x) + \cos^{2}(x) =

sin 2 ( x ) ( 1 cos 2 ( x ) ) + cos 2 ( x ) = \sin^{2}(x)(1 - \cos^{2}(x)) + \cos^{2}(x) =

sin 2 ( x ) sin 2 ( x ) cos 2 ( x ) + cos 2 ( x ) = \sin^{2}(x) - \sin^{2}(x)\cos^{2}(x) + \cos^{2}(x) =

[ sin 2 ( x ) + cos 2 ( x ) ] 1 4 [ 2 sin ( x ) cos ( x ) ] 2 = [\sin^{2}(x) + \cos^{2}(x)] - \dfrac{1}{4}[2\sin(x)\cos(x)]^{2} =

1 sin 2 ( 2 x ) 4 . 1 - \dfrac{\sin^{2}(2x)}{4}.

As 0 sin 2 ( 2 x ) 1 0 \le \sin^{2}(2x) \le 1 for all x x , we have that

( 1 1 4 ) ( 1 sin 2 ( 2 x ) 4 ) ( 1 0 ) 3 4 A 1 . (1 - \dfrac{1}{4}) \le (1 - \dfrac{\sin^{2}(2x)}{4}) \le (1 - 0) \Longrightarrow \boxed{\dfrac{3}{4} \le A \le 1}.

Method 2: We have that

A = sin 4 ( x ) + ( 1 sin 2 ( x ) ) = ( sin 2 ( x ) 1 2 ) 2 + 3 4 . A = \sin^{4}(x) + (1 - \sin^{2}(x)) = (\sin^{2}(x) - \dfrac{1}{2})^{2} + \dfrac{3}{4}.

Now since 0 sin 2 ( x ) 1 0 \le \sin^{2}(x) \le 1 we have that 0 ( sin 2 ( x ) 1 2 ) 2 1 4 0 \le (\sin^{2}(x) - \dfrac{1}{2})^{2} \le \dfrac{1}{4} ,

and thus 3 4 A 1 . \boxed{\dfrac{3}{4} \le A \le 1}.

Method 3: Differentiate A ( x ) A(x) and set the derivative equal to 0 0 to find the critical points:

d A d x = 4 sin 3 ( x ) cos ( x ) 2 cos ( x ) sin ( x ) = 2 sin ( x ) cos ( x ) ( 2 sin 2 ( x ) 1 ) = 0 \dfrac{dA}{dx} = 4\sin^{3}(x)\cos(x) - 2\cos(x)\sin(x) = 2\sin(x)\cos(x)(2\sin^{2}(x) - 1) = 0

when either sin ( x ) = 0 , cos ( x ) = 0 \sin(x) = 0, \cos(x) = 0 or sin 2 ( x ) = 1 2 . \sin^{2}(x) = \dfrac{1}{2}.

With sin ( x ) = 0 \sin(x) = 0 we have cos 2 ( x ) = 1 \cos^{2}(x) = 1 and thus A = 1. A = 1.

With cos ( x ) = 0 \cos(x) = 0 we have sin 2 ( x ) = 1 \sin^{2}(x) = 1 and thus A = 1. A = 1.

With sin 2 ( x ) = 1 2 \sin^{2}(x) = \dfrac{1}{2} we have cos 2 ( x ) = 1 2 \cos^{2}(x) = \dfrac{1}{2} and thus

A = ( 1 2 ) 2 + 1 2 = 3 4 . A = (\dfrac{1}{2})^{2} + \dfrac{1}{2} = \dfrac{3}{4}.

Thus, once again, 3 4 A 1 . \boxed{\dfrac{3}{4} \le A \le 1}.

Thanks for the three methods.

Niranjan Khanderia - 6 years, 3 months ago

cute explanation sir. :P

Sandeep Bhardwaj - 6 years, 3 months ago

Log in to reply

Thanks. I've added a couple of other methods to make my solution cuter. :D

Brian Charlesworth - 6 years, 3 months ago

FYI, I edited the question slightly to better express what you intended.

Calvin Lin Staff - 6 years, 3 months ago

Method 1 is cute :)

Vincent Miller Moral - 6 years, 3 months ago

thanks a lot dear u are great as u gave 3 solutions to the same question. This also proves that your concepts about mathematics are very very sharp and clear. Love you till infiniity

Shashank Rustagi - 6 years, 3 months ago
Curtis Clement
Feb 21, 2015

Using the identity s i n 2 x + c o s 2 x = 1 \ sin^2 x + cos^2 x = 1 : s i n 4 x + c o s 2 x = s i n 4 x s i n 2 + 1 \ sin^4 x + cos^2 x = sin^4 x - sin^2 +1 . Now let y = sin 2 x \ y = \sin^2 x and complete the square as follows: y 2 y + 1 = ( y 1 2 ) 2 + 3 4 3 4 ( 1 ) y^2 - y +1 = (y-\frac{1}{2})^2 + \frac{3}{4}\geq\frac{3}{4} \ (1) Now to create an upper bound: y 2 y + 1 ( y 1 ) 2 y^2 - y + 1 \leq\ (y-1)^2 e q u a l i t y h o l d s w h e n y = 0 A 1 \large \ equality \ holds \ when \ y = 0 \Rightarrow\ A\leq\ 1 3 4 A 1 \large \therefore\frac{3}{4}\leq\ A \leq\ 1

Plot the function and see it varies from 3 4 \dfrac{3}{4} to 1 1 .

Bhargav Upadhyay
Feb 26, 2015

A = sin 4 x + cos 2 x = cos 2 x + sin 2 x sin 2 x n o w sin 2 x 1 cos 2 x + sin 2 x sin 2 x cos 2 x + sin 2 x A 1. N o w A = sin 4 x + 1 sin 2 x = ( sin 2 x 1 2 ) 2 + 3 4 A 3 4 . 3 4 A 1 A=\sin ^{ 4 }{ x } +\cos ^{ 2 }{ x } =\quad \cos ^{ 2 }{ x } +\sin ^{ 2 }{ x } \sin ^{ 2 }{ x } \\ now\quad \sin ^{ 2 }{ x } \le \quad 1\\ \therefore \quad \cos ^{ 2 }{ x } +\sin ^{ 2 }{ x } \sin ^{ 2 }{ x } \le \quad \cos ^{ 2 }{ x } +\sin ^{ 2 }{ x } \\ \therefore \quad A\quad \le \quad 1.\\ Now\quad \\ A\quad =\sin ^{ 4 }{ x } +1-\sin ^{ 2 }{ x } =\quad { (\sin ^{ 2 }{ x } -\quad \frac { 1 }{ 2 } ) }^{ 2 }+\frac { 3 }{ 4 } \\ \therefore \quad A\ge \quad \frac { 3 }{ 4 } .\\ \therefore \frac { 3 }{ 4 } \le A\le 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...