Range ? Of which function!!

Algebra Level 4

x = 4 λ 1 + λ 2 x=\frac { 4\lambda }{ 1+{ \lambda }^{ 2 } } y = 2 2 λ 2 1 + λ 2 y=\frac { 2-2{ \lambda }^{ 2 } }{ 1+{ \lambda }^{ 2 } } λ \lambda \in \Re If the range of x 2 + y 2 x y { x }^{ 2 }+{ y }^{ 2 }-xy is [a,b] , find a+b.

4 8 0 6 5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 23, 2015

Let λ = tan θ 2 \lambda = \tan{\frac{\theta}{2}} .

{ x = 4 λ 1 + λ 2 = 4 tan θ 2 1 + tan 2 θ 2 = 2 sin θ y = 2 2 λ 2 1 + λ 2 = 2 ( 1 tan 2 θ 2 ) 1 + tan 2 θ 2 = 2 cos θ \begin{cases} x = \dfrac {4\lambda}{1+\lambda^2} = \dfrac {4\tan{\frac{\theta}{2}}}{1+\tan^2{\frac{\theta}{2}}} = 2\sin{\theta} \\ y = \dfrac {2-2\lambda^2}{1+\lambda^2} = \dfrac {2\left(1-\tan^2{\frac{\theta}{2}}\right)}{1+\tan^2{\frac{\theta}{2}}} = 2\cos{\theta} \end{cases}

x 2 + y 2 x y = 4 sin 2 θ + 4 cos 2 θ 4 sin θ cos θ = 4 2 sin 2 θ \Rightarrow x^2+y^2-xy = 4\sin^2{\theta} + 4\cos^2{\theta} - 4\sin{\theta}\cos{\theta} = 4-2\sin{2\theta}

Since sin 2 θ [ 1 , 1 ] x 2 + y 2 x y [ 2 , 6 ] a + b = 2 + 6 = 8 \space \sin{2\theta} \in [-1,1] \quad \Rightarrow x^2+y^2-xy \in [2,6] \quad \Rightarrow a + b = 2+6 = \boxed{8}

same method sir :) @Chew-Seong Cheong

Madhukar Thalore - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...