Rate of growth of an infinite, forever-growing power tower

Calculus Level 3

Cool question:

Which function describes the rate of growth of the following expression?

y = x x x x x x \Huge{y=x^{x^{x^{x^{x^{x^{\ \cdot^{\ \cdot^{\ \cdot}}}}}}}}}

x ( x x x x . . . ) 3 1 ln x x x x x . . . \dfrac{x(x^{x^{x^{x^{...}}}})^3}{1-\ln x\cdot x^{x^{x^{x^{...}}}}} ( x x x x . . . ) 2 x ( 1 ln x x x x x . . . ) \dfrac{(x^{x^{x^{x^{...}}}})^2}{x(1-\ln x\cdot x^{x^{x^{x^{...}}}})} x x x x . . . ( 1 x ln x ) 2 \dfrac{x^{x^{x^{x^{...}}}}}{(1-x\ln x)^2} ln 2 x ( x x 1 x x . . . ) e ln x x x x x . . . \dfrac{\ln^2x\cdot(x^{x-1^{x^{x^{...}}}})}{e-\ln x\cdot x^{x^{x^{x^{...}}}}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Saúl Huerta
Dec 3, 2019

First, let us start by doing some substitutions: y = x x x x x . . . \displaystyle y=x^{x^{x^{x^{x^{...}}}}} y = x y \displaystyle \implies y=x^y Now, it is clear we need to find the derivative of this function. To ease the differentiation of an exponential function, we know we have to use some sort of e x e^x expression, so we rewrite as follows: y = e y ln x \displaystyle y=e^{y\ln x} By implicit differentiation: d y d x = d d x [ e y ln x ] \frac{\text{d}y}{\text{d}x}= \frac{\text{d}}{\text{d}x} \displaystyle{[e^{y\ln x}]} Solving it completely gives us: d y d x = y 2 x ( 1 ln x y ) \dfrac{\text{d}y}{\text{d}x}=\dfrac{y^2}{x(1-\ln x\cdot y)} Substituting for y y is the final answer: d y d x = ( x x x x x . . . ) 2 x ( 1 ln x x x x x x . . . ) \boxed{\dfrac{\text{d}y}{\text{d}x}=\dfrac{\left(x^{x^{x^{x^{x^{...}}}}}\right)^2}{x(1-\ln x\cdot x^{x^{x^{x^{x^{...}}}}})}}

y = x x x x y = x y = e y ln x d y d x = e y ln x d d x ( y ln x ) = y ( ln x d y d x + y x ) d y d x y ln x d y d x = y 2 x d y d x = y 2 x ( 1 y ln x ) = ( x x x x ) 2 x ( 1 ln x x x x x ) \begin{aligned} y & = x^{x^{x^{x^{\cdot^{\cdot^{\cdot}}}}}} \\ \implies y & = x^y = e^{y\ln x} \\ \frac {dy}{dx} & = \blue{e^{y\ln x}} \cdot \frac d{dx} (y\ln x) \\ & = \blue y \left(\ln x \frac {dy}{dx} + \frac yx\right) \\ \frac {dy}{dx} - y \ln x \frac {dy}{dx} & = \frac {y^2}x \\ \implies \frac {dy}{dx} & = \frac {y^2}{x(1-y\ln x)} = \boxed{\frac {\big(x^{x^{x^{x^{\cdot^{\cdot^{\cdot}}}}}}\big)^2}{x \big(1-\ln x \cdot x^{x^{x^{x^{\cdot^{\cdot^{\cdot}}}}}}\big)}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...