Ratio between sum of fractions

Algebra Level 3

A = 1 1 + 1 3 + 1 5 + . . . + 1 99 1 1 × 99 + 1 3 × 97 + 1 5 × 95 + . . . + 1 99 × 1 \large{A=\frac{\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}}{\frac{1}{1\times 99}+\frac{1}{3\times 97}+ \frac 1{5 \times 95} +...+\frac{1}{99\times 1}}} Find A A .


The answer is 50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Gabriel Chacón
Apr 13, 2019

Let S = 1 1 + 1 3 + 1 5 + + 1 99 S=\dfrac{1}{1}+\dfrac{1}{3}+\dfrac{1}{5}+\ldots+\dfrac{1}{99}

Decompose the fractions in the denominator:

1 1 × 99 = 1 100 ( 1 1 + 1 99 ) 1 3 × 97 = 1 100 ( 1 3 + 1 97 ) \dfrac{1}{1\times 99}=\dfrac{1}{100}\left(\dfrac{1}{1}+\dfrac{1}{99}\right) \\ \dfrac{1}{3\times 97}=\dfrac{1}{100}\left(\dfrac{1}{3}+\dfrac{1}{97}\right) \\ \quad \vdots \\

The denominator of A A becomes 1 100 × 2 S \dfrac{1}{100}\times 2S

Therefore, S 1 100 × 2 S = 50 \dfrac{S}{\dfrac{1}{100}\times 2S}=\boxed{50}

Michael Zheng
Apr 11, 2019

(Slight edit since the n only goes odd, as pointed out.)

But the n goes odd only...

Ong Zi Qian - 2 years, 2 months ago

Oh, my bad. I'll edit my solution.

Michael Zheng - 2 years, 1 month ago
Anirudh Sreekumar
Apr 11, 2019

Let x = n = 0 49 1 2 n + 1 x = n = 0 49 1 2 ( 49 n ) + 1 2 x = n = 0 49 1 2 n + 1 + 1 2 ( 49 n ) + 1 = n = 0 49 ( 2 n + 1 ) + ( 2 ( 49 n ) + 1 ) ( 2 n + 1 ) ( 2 ( 49 n ) + 1 ) = n = 0 49 100 ( 2 n + 1 ) ( 2 ( 49 n ) + 1 ) 2 x 100 = n = 0 49 1 ( 2 n + 1 ) ( 2 ( 49 n ) + 1 ) A = n = 0 49 1 2 n + 1 n = 0 49 1 ( 2 n + 1 ) ( 2 ( 49 n ) + 1 ) = x ( 2 x 100 ) = 100 2 = 50 \begin{aligned}\\ \text{Let } x&=\sum_{n=0}^{49}\dfrac{1}{2n+1}\\ x&=\sum_{n=0}^{49}\dfrac{1}{2(49-n)+1}\\ 2x&=\sum_{n=0}^{49}\dfrac{1}{2n+1}+\dfrac{1}{2(49-n)+1}\\ &=\sum_{n=0}^{49}\dfrac{(2n+1)+(2(49-n)+1)}{(2n+1)(2(49-n)+1)}\\ &=\sum_{n=0}^{49}\dfrac{100}{(2n+1)(2(49-n)+1)}\\ \implies \dfrac{2x}{100}&=\sum_{n=0}^{49}\dfrac{1}{(2n+1)(2(49-n)+1)}\\ A&=\dfrac{\sum_{n=0}^{49}\dfrac{1}{2n+1}}{\sum_{n=0}^{49}\dfrac{1}{(2n+1)(2(49-n)+1)}}\\\\ &=\dfrac{x}{\left(\dfrac{2x}{100}\right)}\\\\ &=\dfrac{100}{2}=\color{#EC7300}\boxed{\color{#333333}50}\end{aligned}

Kyle T
Apr 10, 2019

<?php
$num = 0;
$den = 0
for($i=1;$i<=99;$i+=2){
$num += 1/$i;
$den += 1/($i*(100-$i));
}
echo $num/$den; //50
?>





Quick and dirty code, we're adding the values in the numerator and denominator separately then combining them at the end of the loop
It gives us a nice clean integer solution, 50
Good problem

1/(2n-1)(101-2n)=(1/100)[{1/(2n-1)}+{1/(101-2n)}]. From symmetry, A=100[(1/1)+(1/3)+(1/5)+...+(1/99)]/[2{(1/1)+(1/3)+...+(1/99)}]=100/2=50

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...