Ratio of 2 integrals with a limit

Calculus Level 5

lim m 0 e π m x sin ( π x ) ln ( e π x m + 1 ) d x 0 e π x m sin ( π x ) ln ( e π m x + 1 ) d x = 2 T T + 1 ln T ζ ( 1 + T ) \large \lim_{m\to\infty} \dfrac{\int_0^\infty e^{-\pi m x} \sin(\pi x) \ln\left( e^{-\frac{\pi x}m} + 1 \right) \, dx}{\int_0^\infty e^{-\frac{\pi x}m} \sin(\pi x) \ln\left( e^{-\pi m x}+ 1 \right) \, dx } = \dfrac {2T}{T+1} \cdot \dfrac { \ln T}{\zeta (1+T)} Find the value of T T .

2 4 1 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Apr 3, 2019

Note first that 0 e a x sin b x d x = b a 2 + b 2 a , b > 0 \int_0^\infty e^{-ax}\sin\,bx\,dx \; = \; \frac{b}{a^2+b^2} \hspace{2cm}a,b > 0 and so F ( m ) = 0 e π m x sin ( π x ) ln ( 1 + e π x m ) d x = k = 1 ( 1 ) k + 1 k 0 e ( m π + k π m ) x sin ( π x ) d x = k = 1 ( 1 ) k + 1 k π π 2 ( m + k m ) 2 + π 2 = m 2 π k = 1 ( 1 ) k + 1 k [ ( k + m 2 ) 2 + m 2 ] = m 2 π G ( m ) \begin{aligned} F(m) & = \; \int_0^\infty e^{-\pi mx} \sin(\pi x) \ln\big(1 + e^{-\frac{\pi x}{m}}\big)\,dx \; = \; \sum_{k=1}^\infty \frac{(-1)^{k+1}}{k}\int_0^\infty e^{-\big(m\pi+\frac{k\pi}{m}\big)x}\sin(\pi x)\,dx \\ & = \; \sum_{k=1}^\infty \frac{(-1)^{k+1}}{k} \frac{\pi}{\pi^2\big(m + \frac{k}{m}\big)^2 + \pi^2} \; = \; \frac{m^2}{\pi}\sum_{k=1}^\infty \frac{(-1)^{k+1}}{k\big[(k+m^2)^2+m^2\big]} \; = \; \frac{m^2}{\pi}G(m) \end{aligned} where G ( m ) = k = 1 ( 1 ) k + 1 k [ ( k + m 2 ) 2 + m 2 ] m > 0 G(m) \; = \; \sum_{k=1}^\infty \frac{(-1)^{k+1}}{k\big[(k+m^2)^2+m^2\big]} \hspace{2cm} m > 0 Since k = 1 k 3 \sum_{k=1}^\infty k^{-3} is convergent, it is easy to deduce that lim m G ( m 1 ) = lim m 0 G ( m ) = k = 1 ( 1 ) k + 1 k 3 = k = 1 1 k 3 2 k = 1 1 ( 2 k ) 3 = 3 4 ζ ( 3 ) \lim_{m\to\infty}G\big(m^{-1}\big) \; = \; \lim_{m \to 0}G(m) \; = \; \sum_{k=1}^\infty \frac{(-1)^{k+1}}{k^3} \; = \; \sum_{k=1}^\infty \frac{1}{k^3} - 2\sum_{k=1}^\infty \frac{1}{(2k)^3} \; = \; \tfrac34\zeta(3) Now m 4 G ( m ) = m 4 k = 1 ( 1 ) k + 1 k [ ( k + m 2 ) 2 + m 2 ] = k = 1 ( 1 ) k + 1 k [ ( 1 + k m 2 ) 2 + m 2 ] m^4G(m) \; = \; m^4\sum_{k=1}^\infty \frac{(-1)^{k+1}}{k\big[(k+m^2)^2 + m^2\big]} \; = \; \sum_{k=1}^\infty \frac{(-1)^{k+1}}{k\big[(1 + km^{-2})^2 + m^{-2}\big]} and a simplistic argument indicates that lim m m 4 G ( m ) = k = 1 ( 1 ) k + 1 k = ln 2 \lim_{m \to \infty}m^4G(m) \; = \; \sum_{k=1}^\infty \frac{(-1)^{k+1}}{k} \; = \; \ln2 Given that the series for m 4 G ( m ) m^4G(m) is not uniformly convergent in m m , this deduction is somewhat dodgy. However, a more detailed analysis shows that m 4 G ( m ) = m 2 2 i ( m 2 + 1 ) [ ( m + i ) [ ψ ( 1 + m 2 i m ) ψ ( 1 + 1 2 m 2 1 2 i m ) ] ( m i ) [ ψ ( 1 + m 2 + i m ) ψ ( 1 + 1 2 m 2 + 1 2 i m ) ] ] m^4G(m) \; = \; \frac{m^2}{2i(m^2+1)}\left[ \begin{array}{l} (m+i)\big[\psi(1 + m^2-im) - \psi(1 + \tfrac12m^2 - \tfrac12im)\big] \\ - (m-i)\big[\psi(1+m^2+im) - \psi(1 + \tfrac12m^2 + \tfrac12im)\big]\end{array}\right] where ψ \psi is the digamma function, and the fact that ψ ( z ) = ln z + O ( z 1 ) \psi(z) = \ln z + \mathrm{O}(z^{-1}) as z |z| \to \infty uniformly for A r g ( z ) π δ |\mathrm{Arg}(z)| \le \pi-\delta for any δ > 0 \delta > 0 tells us indeed that lim m m 4 G ( m ) = ln 2 \lim_{m \to \infty}m^4G(m) \; = \; \;\ln2 Thus lim m F ( m ) F ( m 1 ) = lim m m 4 G ( m ) G ( m 1 ) = ln 2 3 4 ζ ( 3 ) = 4 ln 2 3 ζ ( 3 ) \lim_{m \to \infty} \frac{F(m)}{F(m^{-1})} \; = \; \lim_{m \to \infty} \frac{m^4G(m)}{G(m^{-1})} \; = \; \frac{\ln2}{\frac34\zeta(3)} \; = \; \frac{4\ln2}{3\zeta(3)} which makes T = 2 T = \boxed{2} .

A briiliant solution, thanks

Srinivasa Raghava - 2 years, 1 month ago

That was pretty hard

Alex Thompson - 2 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...