Ratio of integrals & Golden-ratio.

Calculus Level 3

α = d x ( 2 cosh x ϕ ) ( 2 cosh x 1 ϕ ) d x ( 2 cosh x + ϕ ) ( 2 cosh x + 1 ϕ ) {\Large \alpha =} \frac {\displaystyle \int_{-\infty}^\infty \frac {dx}{(2\cosh x - \phi)\left(2\cosh x - \frac 1\phi\right)}} {\displaystyle \int_{-\infty}^\infty \frac {dx}{(2\cosh x + \phi)\left(2\cosh x + \frac 1\phi\right)}}

For α \alpha as defined above, where ϕ = 5 + 1 2 \phi = \dfrac {\sqrt 5+1}2 , find α 2 7 α \alpha^2 - 7\alpha .


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Sep 4, 2019

Note that F ( a ) = 1 2 cosh x a d x = e x d x e 2 x a e x + 1 = [ 2 4 a 2 tan 1 ( 2 e x a 4 a 2 ) ] = 1 4 a 2 { π + 2 tan 1 ( a 4 a 2 ) } \begin{aligned} F(a) & = \; \int_{-\infty}^\infty \frac{1}{2\cosh x - a}\,dx \; = \; \int_{-\infty}^\infty \frac{e^x\,dx}{e^{2x} - ae^x + 1} \\ &= \; \Big[\frac{2}{\sqrt{4-a^2}}\tan^{-1}\left(\frac{2e^x-a}{\sqrt{4-a^2}}\right)\Big]_{-\infty}^\infty \; = \; \frac{1}{\sqrt{4-a^2}}\left\{ \pi + 2\tan^{-1}\left(\frac{a}{\sqrt{4-a^2}}\right)\right\} \end{aligned} for any a < 2 |a| < 2 , and hence 1 ( 2 cosh x a ) ( 2 cosh x a 1 ) d x = 1 a a 1 ( F ( a ) F ( a 1 ) ) \int_{-\infty}^\infty \frac{1}{(2\cosh x - a)(2\cosh x - a^{-1})}\,dx \; = \; \frac{1}{a-a^{-1}}\big(F(a) - F(a^{-1})\big) for any 1 2 < a < 2 \tfrac12 < |a| < 2 . The ratio we are interested in is α = F ( ϕ ) F ( ϕ 1 ) F ( ϕ 1 ) F ( ϕ ) \alpha \; = \; \frac{F(\phi) - F(\phi^{-1})}{F(-\phi^{-1}) - F(-\phi)} (recall that ϕ ϕ 1 = 1 \phi - \phi^{-1} = 1 ). After much simplification, we obtain α = 1 2 ( 7 + 5 5 ) \alpha \; = \; \tfrac12(7 + 5\sqrt{5}) and hence α 2 7 α = 19 \alpha^2 - 7\alpha = \boxed{19} .

Yes, exactly. Very good job.

Srinivasa Raghava - 1 year, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...