Ratio Of Integrals

Calculus Level 5

If I 1 = 0 1 x 7 2 ( 1 x ) 9 2 30 d x I_1=\int_{0}^{1} \dfrac{x^{\frac 72}(1-x)^{\frac 92}}{30} dx

and I 2 = 0 1 x 7 2 ( 1 x ) 9 2 ( x + 5 ) 10 d x I_2=\int_{0}^{1}\dfrac{x^{\frac 72}(1-x)^{\frac 92}}{(x+5)^{10}} dx

and I 1 I 2 = 5 a 3 a \dfrac{I_1}{I_2}=5a^3\sqrt{a} , where a N a\in \mathbb{N} , find a a .


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mark Hennings
Sep 19, 2019

The substitution x = 5 sin 2 θ 5 + cos 2 θ x \; = \; \frac{5\sin^2\theta}{5+\cos^2\theta} gives x 5 + x = 1 6 sin 2 θ 1 x 5 + x = 1 5 cos 2 θ 1 ( 5 + x ) 2 d x = 1 15 sin θ cos θ d θ \frac{x}{5+x} \; = \; \tfrac16\sin^2\theta \hspace{2cm} \frac{1-x}{5+x} \; = \; \tfrac15\cos^2\theta \hspace{2cm} \frac{1}{(5+x)^2}\,dx \; = \; \frac{1}{15}\sin\theta\cos\theta\,d\theta and hence I 2 = 1 15 0 1 2 π ( 1 6 sin 2 θ ) 7 2 ( 1 5 cos 2 θ ) 9 2 sin θ cos θ d θ = 1 15 × 6 7 2 × 5 9 2 0 1 2 π sin 8 θ cos 10 θ d θ = 1 30 × 6 7 2 × 5 9 2 B ( 9 2 , 11 2 ) = 1 6 7 2 × 5 9 2 I 1 \begin{aligned} I_2 & = \; \frac{1}{15}\int_0^{\frac12\pi} \left(\tfrac16\sin^2\theta\right)^{\frac72}\left(\tfrac15\cos^2\theta\right)^{\frac92}\,\sin\theta\cos\theta\,d\theta \; = \; \frac{1}{15 \times 6^{\frac72} \times 5^{\frac92}} \int_0^{\frac12\pi} \sin^8\theta\cos^{10}\theta\,d\theta \\ & = \; \frac{1}{30 \times 6^{\frac72} \times 5^{\frac92}} B(\tfrac92,\tfrac{11}{2}) \; = \; \frac{1}{6^{\frac72} \times 5^{\frac92}}I_1 \end{aligned} For those who don't like this substitution, we can instead calculate I 2 = 0 1 x 7 2 ( 1 x ) 9 2 ( 5 + x ) 10 d x = 1 5 10 0 1 x 7 2 ( 1 x ) 9 2 ( 1 + x 5 ) 10 d x = 1 5 10 n 0 ( 1 ) n 5 n ( n + 9 n ) 0 1 x n + 7 2 ( 1 x ) 9 2 d x = 1 5 10 n 0 ( 1 ) n 5 n ( n + 9 n ) B ( n + 9 2 , 11 2 ) = 1 5 10 n 0 ( 1 ) n 5 n ( n + 9 n ) ( 7 2 + n ) × ( 5 2 + n ) × ( 3 2 + n ) × 11 2 × 9 2 ( n + 9 ) × ( n + 8 ) × ( n + 7 ) × × 11 × 10 B ( 9 2 , 11 2 ) = 1 5 10 n 0 ( 1 ) n 5 n ( 7 2 + n ) × ( 5 2 + n ) × ( 3 2 + n ) × 11 2 × 9 2 n ! B ( 9 2 , 11 2 ) = 1 5 10 n 0 ( 9 2 ) ( 11 2 ) ( 5 2 n ) ( 7 2 n ) n ! 5 n B ( 9 2 , 11 2 ) = 1 5 10 ( 1 + 1 5 ) 9 2 B ( 9 2 , 11 2 ) = 1 5 11 2 × 6 9 2 B ( 9 2 , 11 2 ) = 1 5 9 2 × 6 7 2 I 1 \begin{aligned} I_2 & = \; \int_0^1 \frac{x^{\frac72}(1-x)^{\frac92}}{(5+x)^{10}}\,dx \; = \; \frac{1}{5^{10}}\int_0^1 x^{\frac72}(1-x)^{\frac92} \big(1 + \tfrac{x}{5}\big)^{-10}\,dx\\ & = \; \frac{1}{5^{10}}\sum_{n \ge 0} \frac{(-1)^n}{5^n} \binom{n+9}{n}\int_0^1 x^{n+\frac72}(1-x)^{\frac92}\,dx \; = \; \frac{1}{5^{10}}\sum_{n \ge 0}\frac{(-1)^n}{5^n}\binom{n+9}{n} B\big(n + \tfrac92,\tfrac{11}{2}\big) \\ &= \; \frac{1}{5^{10}}\sum_{n \ge 0}\frac{(-1)^n}{5^n}\binom{n+9}{n} \frac{(\frac72+n)\times(\frac52+n)\times(\frac32+n) \cdots\times \frac{11}{2}\times\frac92}{(n+9)\times(n+8)\times(n+7)\times \cdots\times 11 \times10}B\big(\tfrac92,\tfrac{11}{2}\big) \\ & = \; \frac{1}{5^{10}}\sum_{n\ge 0}\frac{(-1)^n}{5^n} \frac{(\frac72+n)\times(\frac52+n)\times(\frac32+n) \cdots\times \frac{11}{2}\times\frac92}{n!}B\big(\tfrac92,\tfrac{11}{2}\big) \\ & = \; \frac{1}{5^{10}}\sum_{n \ge 0} \frac{(-\frac92)(-\frac{11}{2})\cdots(-\frac52-n)(-\frac72-n)}{n! 5^n}B\big(\tfrac92,\tfrac{11}{2}\big) \; = \; \frac{1}{5^{10}}\left(1 + \frac{1}{5}\right)^{-\frac92}B\big(\tfrac92,\tfrac{11}{2}\big) \\ & = \; \frac{1}{5^{\frac{11}{2}} \times 6^{\frac{9}{2}}}B\big(\tfrac92,\tfrac{11}{2}\big) \; = \; \frac{1}{5^{\frac92} \times 6^{\frac72}}I_1 \end{aligned} Either way we deduce that I 1 I 2 = 5 9 2 × 6 7 2 = 5 × 3 0 7 2 \frac{I_1}{I_2} \; = \; 5^{\frac92} \times 6^{\frac72} \; = \; 5 \times 30^{\frac72} making the answer 30 \boxed{30} .

Sir, also see my solution...little shorter

Vilakshan Gupta - 1 year, 8 months ago
Vilakshan Gupta
Sep 19, 2019

Rewrite the Integral as I 2 = 0 1 ( x 5 + x ) 7 2 ( 1 x 5 + x ) 9 2 d x ( 5 + x ) 2 \large I_2=\int_{0}^{1}\left(\dfrac{x}{5+x}\right)^{\frac 72} \left(\dfrac{1-x}{5+x}\right)^{\frac 92}\dfrac{dx}{(5+x)^2}

and do the substitution x 5 + x = t \dfrac{x}{5+x}=t so that d x ( 5 + x ) 2 = d t 5 \dfrac{dx}{(5+x)^2}=\dfrac{dt}{5} and the integral becomes

1 ( 5 ) 11 2 0 1 6 ( t ) 7 2 ( 1 6 t ) 9 2 d t \large \dfrac{1}{(5)^{\frac {11}{2}}} \int_{0}^{\frac 16} (t)^{\frac 72} (1-6t)^{\frac 92} dt and now from here do the substitution 6 t = u 6t=u and we simply obtain I 2 = 1 5 9 2 × 6 7 2 I 1 I_2=\dfrac{1}{5^{\frac 92} \times 6^{\frac 72}} I_1 and we conclude a = 30 a=\boxed{30} .

Alapan Das
Sep 25, 2019

I am feeling happy that my assymptotic method worked well. I found a very near value of a a in this assymptotic method which was 32.24 32.24 . How? Let's look.

The curve of the function f ( x ) = x 7 / 2 ( 1 x ) 9 / 2 ( x + 5 ) 10 f(x)=\frac{{x^{7/2}}{(1-x)^{9/2}}}{(x+5)^{10}} is just like the previous function g ( x ) g(x) ,

g ( x ) = x 7 / 2 ( 1 x ) 9 / 2 g(x)=x^{7/2}(1-x)^{9/2} , both having nodes at 0 0 and 1 1 only.

Now, we shall take the weighted average value of the denominator of f ( x ) f(x) ,( ( x + 5 ) 10 (x+5)^{10} ).

So, the weighted average is ...

0 1 ( x + 5 ) 10 d x 1 \frac{\int_{0}^1 (x+5)^{10} dx}{1}

= 6 11 5 11 11 =\frac{6^{11}-5^{11}}{11} .

So, we get I 1 I 2 = 6 11 5 11 11 × 30 \frac{I_{1}}{I_{2}}=\frac{6^{11}-5^{11}}{11×30} . And comparing this with given form we get a ( 6 11 5 11 5 × 11 × 30 ) 2 / 7 = 32.24.... a≈(\frac{6^{11}-5^{11}}{5×11×30})^{2/7}=32.24....

From here we assume a = 30 a=30 , being motivated by the bounds of ( x + 5 ) (x+5) which are 5 5 and 6 6 . And near to 32 32 , 30 30 has both 5 5 and 6 6 as it's divisors.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...