Ratio of Ratios

Geometry Level 4

2 sin A + 3 sin B 38 = 4 sin B + 5 sin C 77 = 5 sin A + 2 sin C 53 \dfrac{2 \sin A + 3 \sin B}{38}=\dfrac{4 \sin B + 5\sin C}{77}=\dfrac{5\sin A + 2\sin C}{53}

Let A , B , C A, B, C be angles of a triangle that satisfy the condition above.

The ratio cos A : cos B : cos C \cos A : \cos B : \cos C is in the reduced form x : y : z x:y:z where x , y , z x,y,z are positive integers with gcd ( x , y , z ) = 1 \gcd(x,y,z)=1 . What is the value of x + y + z x+y+z ?


The answer is 31.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let k = 2 sin A + 3 sin B 38 = 4 sin B + 5 sin C 77 = 5 sin A + 2 sin C 53 k = \dfrac{2 \sin A + 3 \sin B}{38} = \dfrac{4 \sin B + 5 \sin C}{77} = \dfrac{5 \sin A + 2 \sin C}{53}

So we have the equations

2 sin A + 3 sin B = 38 k 4 sin B + 5 sin C = 77 k 5 sin A + 2 sin C = 53 k 2\sin A + 3\sin B = 38k \\ 4\sin B + 5\sin C=77k \\ 5\sin A + 2\sin C=53k

From the three equations, sin A = 7 k , sin B = 8 k , sin C = 9 k \sin A = 7k, \sin B = 8k, \sin C = 9k

From the law of sines where A , B , C A,B,C are the angles of the triangle, their opposite sides are a , b , c a,b,c , and R R is the circumradius, a sin A = b sin B = c sin C = 2 R \dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R

Now, we have

a = 14 R , b = 16 R , c = 18 R a : b : c = 7 : 8 : 9 a=14R, b=16R, c=18R \rightarrow a:b:c=7:8:9

Finally, from the law of cosines,

cos A = b 2 + c 2 a 2 2 b c = 2 3 cos B = 11 21 cos C = 2 7 \cos A = \dfrac{b^2+c^2-a^2}{2bc} = \dfrac{2}{3}\\ \cos B = \dfrac{11}{21}\\ \cos C = \dfrac{2}{7}

Therefore, cos A : cos B : cos C = 14 : 11 : 6 \cos A: \cos B: \cos C = \boxed{14:11:6}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...