Ratio of Triangular Areas

Geometry Level 3

In the figure below, A B C \triangle ABC is an equilateral triangle. Points D D and E E are the midpoints of sides A B AB and A C AC , respectively.

Find the ratio of:

A r H I J A r A B C \dfrac{Ar\triangle HIJ}{Ar\triangle ABC}

1 : 168 1:168 1 : 160 1:160 1 : 144 1:144 1 : 192 1:192

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

By the symmetry of the given figure, H I B C D E HI\parallel BC \parallel DE . We know that for an equilateral triangle, the median drawn is your perpendicular bisector as well as your angle bisector.

Therefore, E C G \angle ECG = 6 0 o 60^{o} = I E G \angle IEG

Let each side of A B C \triangle ABC = a units

Thus, I E IE = G E cos 6 0 o GE \cos 60^{o} = ( E C sin 6 0 o EC \sin 60^{o} ) x cos 6 0 o \cos 60^{o} = a 2 \frac{a}{2} x 3 2 \frac{\sqrt3}{2} x 1 2 \frac{1}{2} = 3 a 8 \frac{\sqrt3 a}{8}

J J is the centroid that divides B E BE in the ratio 2 : 1 2:1 . Thus, J E JE = 1 3 \frac{1}{3} x 3 a 2 \frac{\sqrt3 a}{2} = a 2 3 \frac{a}{2 \sqrt3}

J I JI = J E JE - I E IE = a 8 3 \frac{a}{8 \sqrt3}

H I J C B J \triangle HIJ \sim \triangle CBJ by AA similarity.

A r H I J A r C B J \dfrac{Ar\triangle HIJ}{Ar\triangle CBJ} = J I 2 B J 2 \frac{JI^{2}}{BJ^{2}} = a 2 ( 192 a 2 ) / 3 \frac{a^{2}}{(192 a^{2})/3} = 1 64 \frac{1}{64}

We know that by symmetry, A r C B J Ar\triangle CBJ = 1 3 \frac{1}{3} x A r A B C Ar\triangle ABC

Hence, A r H I J A r A B C \dfrac{Ar\triangle HIJ}{Ar\triangle ABC} = 1 3 \frac{1}{3} x 1 64 \frac{1}{64} = 1 192 \frac{1}{192}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...