Ratio of Trigonometric Integrals

Calculus Level 4

Evaluate 0 π 2 sin 2 n + 2 ( x ) d x 0 π 2 sin 2 n ( x ) d x \large \dfrac{\displaystyle \int_0^{\frac{\pi}{2}} \! \sin^{2n+2}\left(x\right) \, \mathrm{d}x}{\displaystyle \int_0^{\frac{\pi}{2}} \! \sin^{2n}\left(x\right) \, \mathrm{d}x} for all positive integer n n .

1 1 2 n + 2 1-\frac{1}{2n+2} 1 1 n + 3 1-\frac{1}{n+3} 1 1 3 n + 1 1-\frac{1}{3n+1} 1 1 4 n 1-\frac{1}{4n}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

1. \boxed{1.-}

n 1 n \ge 1 , 0 π 2 sin 2 n + 1 ( x ) d x = 0 π 2 sin 2 n ( x ) sin ( x ) d x = \displaystyle \int_{0}^{\frac{\pi}{2}} \sin^{2n + 1} (x) \, dx = \int_{0}^{\frac{\pi}{2}} \sin^{2n}(x) \cdot \sin (x)\, dx = Integrating by parts, = ( cos ( x ) sin 2 n ( x ) ) 0 π / 2 + 2 n 0 π 2 sin 2 n 1 ( x ) cos 2 ( x ) d x = = \left(- \cos(x) \cdot \sin^{2n}(x) \right)_{0}^{\pi/2} + 2n \cdot \int_{0}^{\frac{\pi}{2}} \sin^{2n - 1}(x) \cdot \cos^{2}(x)\, dx = ( cos 2 ( x ) = 1 sin 2 ( x ) \cos^2(x) = 1 - \sin^2(x) ) 2 n ( 0 π 2 sin 2 n 1 ( x ) d x 0 π 2 sin 2 n + 1 ( x ) d x ) 2n \cdot (\int_{0}^{\frac{\pi}{2}} \sin^{2n - 1}(x) \, dx - \int_{0}^{\frac{\pi}{2}} \sin^{2n + 1}(x) \, dx) \Rightarrow Let's call I = 0 π 2 sin 2 n + 1 ( x ) d x \displaystyle I = \int_{0}^{\frac{\pi}{2}} \sin^{2n + 1} (x) \, dx I = 0 π 2 sin 2 n + 1 ( x ) d x = 2 n 2 n + 1 0 π 2 sin 2 n 1 ( x ) d x I = \int_{0}^{\frac{\pi}{2}} \sin^{2n + 1} (x) \, dx = \frac{2n}{2n +1} \cdot \int_{0}^{\frac{\pi}{2}} \sin^{2n - 1}(x) \, dx \Rightarrow 0 π 2 sin 2 n + 2 ( x ) d x 0 π 2 sin 2 n ( x ) d x = 2 n + 1 2 n + 2 = 2 n + 2 1 2 n + 2 = 1 1 2 n + 2 \displaystyle \frac{\int_{0}^{\frac{\pi}{2}} \sin^{2n + 2} (x) \, dx}{\int_{0}^{\frac{\pi}{2}} \sin^{2n} (x) \, dx} = \frac{2n +1}{2n +2} =\frac{2n + 2 - 1}{2n +2} = 1 - \frac{1}{2n + 2}

2. \boxed{2.-}

You can also use Beta function as suggested by @Aditya Sharma

0 π 2 sin 2 n + 2 ( x ) d x = 0 π 2 sin 2 ( n + 3 / 2 ) 1 ( x ) cos 2 ( 1 / 2 ) 1 ( x ) d x = \displaystyle \int_{0}^{\frac{\pi}{2}} \sin^{2n + 2} (x) \, dx = \int_{0}^{\frac{\pi}{2}} \sin^{2(n + 3/2) - 1} (x) \cdot \cos^{2(1/2) - 1} (x)\, dx = B ( n + 3 / 2 , 1 / 2 ) 2 = Γ ( n + 3 / 2 ) Γ ( 1 / 2 ) 2 Γ ( n + 2 ) \frac{B(n + 3/2, 1/2)}{2} = \frac{\Gamma(n + 3/2) \cdot \Gamma (1/2)}{2 \cdot \Gamma(n + 2)}

In the same way, 0 π 2 sin 2 n ( x ) d x = B ( n + 1 / 2 , 1 / 2 ) 2 = Γ ( n + 1 / 2 ) Γ ( 1 / 2 ) 2 Γ ( n + 1 ) \displaystyle \int_{0}^{\frac{\pi}{2}} \sin^{2n} (x) \, dx = \frac{B(n + 1/2, 1/2)}{2} = \frac{\Gamma(n + 1/2) \cdot \Gamma (1/2)}{2 \cdot \Gamma(n + 1)}

This implies that, 0 π 2 sin 2 n + 2 ( x ) d x 0 π 2 sin 2 n ( x ) d x = Γ ( n + 3 / 2 ) Γ ( 1 / 2 ) 2 Γ ( n + 2 ) Γ ( n + 1 / 2 ) Γ ( 1 / 2 ) 2 Γ ( n + 1 ) = ( n + 1 / 2 ) ( n + 1 ) = ( n + 1 1 / 2 ) ( n + 1 ) = 1 1 2 n + 2 \displaystyle \frac{\int_{0}^{\frac{\pi}{2}} \sin^{2n + 2} (x) \, dx}{\int_{0}^{\frac{\pi}{2}} \sin^{2n} (x) \, dx} = \frac{\frac{\Gamma(n + 3/2) \cdot \Gamma (1/2)}{2 \cdot \Gamma(n + 2)}}{\frac{\Gamma(n + 1/2) \cdot \Gamma (1/2)}{2 \cdot \Gamma(n + 1)}} = \frac{(n + 1/2)}{(n + 1)} = \frac{(n + 1 - 1/2)}{(n + 1)} = 1 - \frac{1}{2n + 2}

A quicker way would be to put n=2 and verify the options

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...