Rational?

Algebra Level 3

Given that ( 1 x ) ( 1 + x + x 2 + x 3 + x 4 ) = 31 32 (1-x)(1+x+x^{2}+x^{3}+x^{4}) = \dfrac{31}{32} and x x is a rational number, what is 1 + x + x 2 + x 3 + x 4 + x 5 1+x+x^{2}+x^{3}+x^{4}+x^{5} ?


The answer is 1.96875.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jun 27, 2017

( 1 x ) ( 1 + x + x 2 + x 3 + x 4 ) = 31 32 . . . ( ) 1 x 5 = 31 32 x 5 = 1 31 32 = 1 32 x = 1 2 ( 1 1 2 ) ( 1 + x + x 2 + x 3 + x 4 ) = 31 32 . . . ( ) 1 + x + x 2 + x 3 + x 4 = 31 16 1 + x + x 2 + x 3 + x 4 + x 5 = 31 16 + 1 32 = 63 32 = 1.96875 \begin{aligned} (1-x)(1+x+x^2+x^3+x^4) & = \frac {31}{32} &...(*) \\ \implies 1-x^5 & = \frac {31}{32} \\ \implies x^5 & = 1 - \frac {31}{32} = \frac 1{32} \\ \implies x & = \frac 12 \\ \left(1-\frac 12 \right)(1+x+x^2+x^3+x^4) & = \frac {31}{32} &...(*) \\ \implies 1+x+x^2+x^3+x^4 & = \frac {31}{16} \\ \implies 1+x+x^2+x^3+x^4 + x^5 & = \frac {31}{16} + \frac 1{32} \\ & = \frac {63}{32} = \boxed{1.96875} \end{aligned}

a popular nmtc problem

Aaryan Maheshwari - 3 years, 5 months ago
Zach Abueg
Jun 26, 2017

( 1 x ) ( 1 + x + x 2 + x 3 + x 4 ) = 31 32 k = 0 n a r k = a ( 1 r n + 1 ) 1 r ( 1 x ) 1 x 5 1 x = 31 32 1 x 5 = 31 32 x 5 = 1 32 x = 1 2 1 + x + x 2 + x 3 + x 4 + x 5 = 1 x 6 1 x = 1 1 64 1 1 2 = 2 63 64 = 63 32 \displaystyle \begin{aligned} (1 - x)(1 + x + x^2 + x^3 + x^4) & = \frac{31}{32} & \small \color{#3D99F6} \sum_{k \ = \ 0}^{n} ar^k = \frac{a(1 - r^{n + 1})}{1 - r} \\ (1 - x) \cdot \frac{1 - x^5}{1 - x} & = \frac{31}{32} \\ 1 - x^5 & = \frac{31}{32} \\ x^5 & = \frac{1}{32} \\ x & = \frac 12 \\ \\ \implies 1 + x + x^2 + x^3 + x^4 + x^5 & = \frac{1 - x^6}{1 - x} \\ & = \frac{1 - \frac{1}{64}}{1 - \frac 12} \\ & = 2 \cdot \frac{63}{64} \\ & = \boxed{\displaystyle \frac{63}{32}} \end{aligned}

Áron Bán-Szabó
Jun 26, 2017

( 1 x ) ( 1 + x + x 2 + x 3 + x 4 ) = 31 32 (1-x)(1+x+x^{2}+x^{3}+x^{4}) = \dfrac{31}{32}

1 + x + x 2 + x 3 + x 4 x x 2 x 3 x 4 x 5 = 31 32 1+x+x^2+x^3+x^4-x-x^2-x^3-x^4-x^5=\dfrac{31}{32}

1 x 5 = 31 32 1-x^5=\dfrac{31}{32}

x 5 = 31 32 1 -x^5=\dfrac{31}{32}-1

x 5 = 1 32 x^5=\dfrac{1}{32}

x = 1 2 x=\dfrac{1}{2}

The answer is 1 2 + 1 4 + 1 8 + 1 16 + 1 32 + 1 = 1.96875 \dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+1=\boxed{1.96875}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...