Rational beauty!!

If 225 157 = [ a ; b , c , d , e ] \frac { 225 }{ 157 } =\left[ a;b,c,d,e \right] and f > 1 f>1 then find a + b + c + d + e a+b+c+d+e .


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

225 157 = [ a ; b , c , d , e ] m e a n s a + 1 b + 1 c + 1 d + 1 e = 225 157 \frac{225}{157}=[a;b,c,d,e]\;means\;a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=\frac{225}{157} So we have to convert 225 157 \frac{225}{157} to continued fraction and then find out the values of a , b , c , d a n d e a,b,c,d\;and\;e So let,s start: 225 157 = 1 68 157 = 1 + 68 157 = 1 + 1 157 68 \frac{225}{157}=1\frac{68}{157}=1+\frac{68}{157}=1+\frac{1}{\frac{157}{68}} 157 68 = 2 21 68 = 2 + 21 68 = 2 + 1 68 21 \frac{157}{68}=2\frac{21}{68}=2+\frac{21}{68}=2+\frac{1}{\frac{68}{21}} 68 21 = 3 5 21 = 3 + 5 21 = 3 + 1 21 5 \frac{68}{21}=3\frac{5}{21}=3+\frac{5}{21}=3+\frac{1}{\frac{21}{5}} 21 5 = 4 1 5 = 4 + 1 5 ( H e r e p r o c e s s s t o p s ) \frac{21}{5}=4\frac{1}{5}=4+\frac{1}{5}\;(Here\;process\;stops) Observe that each of these fractions can be substituted into the previous fraction.Combining all of these ,we get: 225 157 = 1 + 1 2 + 1 3 + 1 4 + 1 5 \frac{225}{157}=1+\frac{1}{2+\frac{1}{3+\frac{1}{4+\frac{1}{5}}}} Equating this with a + 1 b + 1 c + 1 d + 1 e a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}} , We get a = 1 , b = 2 , c = 3 , d = 4 a n d e = 5 a=1,b=2,c=3,d=4\;and\;e=5 Adding all these,we get a + b + c + d + e = 1 + 2 + 3 + 4 + 5 = 5 × 6 2 = 30 2 = 15 a+b+c+d+e=1+2+3+4+5=\frac{5\times6}{2}=\frac{30}{2}=\boxed{15} If anyone wants to know more about continued fractions,he can do so here

There is very short way to deal this!!!

shivamani patil - 6 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...