Rationalisation?

Calculus Level 4

0 1 d x 1 + x + 1 x + 2 = π a + b c + d \int_0^1 \dfrac{dx}{\sqrt{1+x}+\sqrt{1-x}+2} = -\dfrac{\pi}{a}+b\sqrt{c}+d

The equation above holds true for integers a a , b b , c c , and d d , where c c is square free. Find a + b + c + d a+b+c+d .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Karan Chatrath
Mar 12, 2020

Consider the given integral:

I = 0 1 d x 1 + x + 1 x + 2 I = \int_{0}^{1} \frac{dx}{\sqrt{1+x}+\sqrt{1-x}+2}

Let:

x = cos ( 2 θ ) x = \cos\left(2\theta\right) d x = 2 sin ( 2 θ ) d θ \implies dx = -2\sin\left(2\theta\right) \ d\theta

Moreover, when x = 0 x=0 , θ = π / 4 \theta = \pi/4 and when x = 1 x=1 , θ = 0 \theta = 0 . Applying this chage of variable transforms the integral to:

I = π / 4 0 2 sin ( 2 θ ) d θ 2 cos θ + 2 sin θ + 2 I = \int_{\pi/4}^{0} \frac{-2\sin\left(2\theta\right) \ d\theta}{\sqrt{2}\cos{\theta} + \sqrt{2}\sin{\theta} + 2}

Note that:

2 cos θ + 2 sin θ = 2 sin ( θ + π 4 ) \sqrt{2}\cos{\theta} + \sqrt{2}\sin{\theta} = 2\sin\left(\theta+\frac{\pi}{4}\right)

I = 0 π / 4 2 sin ( 2 θ ) d θ 2 sin ( θ + π 4 ) + 2 I = \int_{0}^{\pi/4} \frac{2\sin\left(2\theta\right) \ d\theta}{2\sin\left(\theta+\frac{\pi}{4}\right) + 2}

I = 0 π / 4 2 cos θ sin θ d θ sin ( θ + π 4 ) + 1 I = \int_{0}^{\pi/4} \frac{2\cos{\theta}\sin{\theta} \ d\theta}{\sin\left(\theta+\frac{\pi}{4}\right) + 1}

Let z = θ + π 4 z = \theta+\frac{\pi}{4} . This change of variables transforms the integral to:

I = π / 4 π / 2 2 cos ( z π 4 ) sin ( z π 4 ) d z sin z + 1 I = \int_{\pi/4}^{\pi/2} \frac{2\cos\left(z-\frac{\pi}{4}\right)\sin\left(z-\frac{\pi}{4}\right) \ dz}{\sin{z} + 1}

I = π / 4 π / 2 sin ( 2 z π 2 ) d z sin z + 1 I = \int_{\pi/4}^{\pi/2} \frac{\sin\left(2z-\frac{\pi}{2}\right) \ dz}{\sin{z} + 1}

I = π / 4 π / 2 sin ( π 2 2 z ) d z sin z + 1 I = \int_{\pi/4}^{\pi/2} \frac{-\sin\left(\frac{\pi}{2}-2z\right) \ dz}{\sin{z} + 1}

I = π / 4 π / 2 cos ( 2 z ) d z sin z + 1 I = \int_{\pi/4}^{\pi/2} \frac{-\cos\left(2z\right) \ dz}{\sin{z} + 1}

I = π / 4 π / 2 ( 1 2 sin 2 z ) ( 1 sin z ) d z cos 2 z I = -\int_{\pi/4}^{\pi/2} \frac{\left(1 - 2\sin^2{z}\right)\left(1 -\sin{z}\right) \ dz}{\cos^2{z}}

Using trigonometric relations, this can be further simplified to:

I = π / 4 π / 2 ( 2 sec 2 z sec z tan z + 2 sin 3 z cos 2 z ) d z I = -\int_{\pi/4}^{\pi/2} \left(2 - \sec^2{z} - \sec{z}\tan{z} + \frac{2\sin^3{z}}{\cos^2{z}}\right)dz

I = lim b π / 2 ( π / 4 b ( 2 sec 2 z sec z tan z + 2 sin 3 z cos 2 z ) d z ) I = \lim_{b \to \pi/2} \left(-\int_{\pi/4}^{b} \left(2 - \sec^2{z} - \sec{z}\tan{z} + \frac{2\sin^3{z}}{\cos^2{z}}\right)dz\right)

I am leaving out intermediate steps from here and presenting the final answer.

I = 2 2 1 π 2 I = 2\sqrt{2}-1 -\frac{\pi}{2}

Therefore:

a = 2 a = 2 b = 2 b = 2 c = 2 c = 2 d = 1 d = -1

Mark Hennings
Mar 12, 2020

Putting u 2 = 1 x u^2 = 1-x and then u = 2 sin θ u = \sqrt{2}\sin\theta makes the integral equal to I = 0 1 2 u 2 u 2 + u + 2 d u = 2 0 1 u ( u + 2 2 u 2 ) ( u + 2 ) 2 ( 2 u 2 ) d u = 0 1 u 2 + 2 u u 2 u 2 ( u + 1 ) 2 d u = 0 1 { 1 1 ( u + 1 ) 2 u 2 u 2 ( u + 1 ) 2 } d u = 1 2 0 1 u 2 u 2 ( u + 1 ) 2 d u = 1 2 2 2 0 1 4 π sin θ cos 2 θ ( 2 sin θ + 1 ) 2 d θ \begin{aligned} I & = \; \int_0^1 \frac{2u}{\sqrt{2-u^2} + u + 2}\,du \; = \; 2\int_0^1 \frac{u\big(u+2 - \sqrt{2-u^2}\big)}{(u+2)^2 - (2-u^2)}\,du \\ & = \; \int_0^1 \frac{u^2 + 2u - u\sqrt{2-u^2}}{(u+1)^2}\,du \; = \; \int_0^1 \left\{ 1 - \frac{1}{(u+1)^2} - \frac{u\sqrt{2-u^2}}{(u+1)^2}\right\}\,du \\ &= \; \frac12 - \int_0^1 \frac{u\sqrt{2-u^2}}{(u+1)^2}\,du \; = \;\frac12 - 2\sqrt{2}\int_0^{\frac14\pi} \frac{\sin \theta \cos^2\theta}{(\sqrt{2}\sin\theta + 1)^2}\,d\theta \end{aligned} Integrating by parts this last integral becomes I = 1 2 2 2 [ sin θ cos θ 2 ( 2 sin θ + 1 ) ] 0 1 4 π 2 2 0 1 4 π 1 2 sin 2 θ 2 ( 2 sin θ + 1 ) d θ = 1 + 2 0 1 4 π ( 2 sin θ 1 ) d θ = 1 2 π + 2 2 1 \begin{aligned} I & = \; \frac12 - 2\sqrt{2}\left[-\frac{\sin\theta \cos\theta}{\sqrt{2}(\sqrt{2}\sin\theta + 1)}\right]_0^{\frac14\pi} - 2\sqrt{2}\int_0^{\frac14\pi} \frac{1 - 2\sin^2\theta}{\sqrt{2}(\sqrt{2}\sin\theta + 1)}\,d\theta \\ &= \; 1 + 2\int_0^{\frac14\pi} \big(\sqrt{2}\sin\theta - 1\big)\,d\theta \; = \; -\tfrac12\pi + 2\sqrt{2} - 1 \end{aligned} making the answer 2 + 2 + 2 1 = 5 2+ 2 + 2 - 1 = \boxed{5} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...