∫ 0 1 1 + x + 1 − x + 2 d x = − a π + b c + d
The equation above holds true for integers a , b , c , and d , where c is square free. Find a + b + c + d .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Putting u 2 = 1 − x and then u = 2 sin θ makes the integral equal to I = ∫ 0 1 2 − u 2 + u + 2 2 u d u = 2 ∫ 0 1 ( u + 2 ) 2 − ( 2 − u 2 ) u ( u + 2 − 2 − u 2 ) d u = ∫ 0 1 ( u + 1 ) 2 u 2 + 2 u − u 2 − u 2 d u = ∫ 0 1 { 1 − ( u + 1 ) 2 1 − ( u + 1 ) 2 u 2 − u 2 } d u = 2 1 − ∫ 0 1 ( u + 1 ) 2 u 2 − u 2 d u = 2 1 − 2 2 ∫ 0 4 1 π ( 2 sin θ + 1 ) 2 sin θ cos 2 θ d θ Integrating by parts this last integral becomes I = 2 1 − 2 2 [ − 2 ( 2 sin θ + 1 ) sin θ cos θ ] 0 4 1 π − 2 2 ∫ 0 4 1 π 2 ( 2 sin θ + 1 ) 1 − 2 sin 2 θ d θ = 1 + 2 ∫ 0 4 1 π ( 2 sin θ − 1 ) d θ = − 2 1 π + 2 2 − 1 making the answer 2 + 2 + 2 − 1 = 5 .
Problem Loading...
Note Loading...
Set Loading...
Consider the given integral:
I = ∫ 0 1 1 + x + 1 − x + 2 d x
Let:
x = cos ( 2 θ ) ⟹ d x = − 2 sin ( 2 θ ) d θ
Moreover, when x = 0 , θ = π / 4 and when x = 1 , θ = 0 . Applying this chage of variable transforms the integral to:
I = ∫ π / 4 0 2 cos θ + 2 sin θ + 2 − 2 sin ( 2 θ ) d θ
Note that:
2 cos θ + 2 sin θ = 2 sin ( θ + 4 π )
I = ∫ 0 π / 4 2 sin ( θ + 4 π ) + 2 2 sin ( 2 θ ) d θ
I = ∫ 0 π / 4 sin ( θ + 4 π ) + 1 2 cos θ sin θ d θ
Let z = θ + 4 π . This change of variables transforms the integral to:
I = ∫ π / 4 π / 2 sin z + 1 2 cos ( z − 4 π ) sin ( z − 4 π ) d z
I = ∫ π / 4 π / 2 sin z + 1 sin ( 2 z − 2 π ) d z
I = ∫ π / 4 π / 2 sin z + 1 − sin ( 2 π − 2 z ) d z
I = ∫ π / 4 π / 2 sin z + 1 − cos ( 2 z ) d z
I = − ∫ π / 4 π / 2 cos 2 z ( 1 − 2 sin 2 z ) ( 1 − sin z ) d z
Using trigonometric relations, this can be further simplified to:
I = − ∫ π / 4 π / 2 ( 2 − sec 2 z − sec z tan z + cos 2 z 2 sin 3 z ) d z
I = b → π / 2 lim ( − ∫ π / 4 b ( 2 − sec 2 z − sec z tan z + cos 2 z 2 sin 3 z ) d z )
I am leaving out intermediate steps from here and presenting the final answer.
I = 2 2 − 1 − 2 π
Therefore:
a = 2 b = 2 c = 2 d = − 1