Rationality!

Find the number of integers n n such that n 1 + n + 1 \sqrt{n-1} + \sqrt{n+1} is a rational number .

6 6 3 3 2 2 0 0 \infty 1 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Viki Zeta
Jul 16, 2016

If n 1 n + 1 is rational, n 1 n + 1 = a b ; ( a , b ) = 1 , b 0 ; a , b Q ... 1 1 n 1 n + 1 = b a b a = n 1 + n + 1 ( n 1 n + 1 ) ( n 1 n + 1 ) b a = n 1 + n + 1 ( n + 1 ) ( n 1 ) b a = n 1 + n + 1 2 n 1 + n + 1 = 2 b a ... 2 1 + 2 a b + 2 b a = n 1 n + 1 + n 1 n + 1 a 2 + 2 b 2 2 a b = 2 n + 1 ... 3 1 2 a b 2 b a = n 1 n + 1 ( n 1 n + 1 ) a 2 2 b 2 2 a b = n 1 ... 4 From 3 and 4 n 1 and n + 1 are rational, as ’a’ and ’b’ are rational. n 1 and n + 1 are perfect squares but, there is no possibility for a square no to differ by 2. Therefore, there is no real solutions for that equation making it rational. \text{If } \sqrt[]{n-1} - \sqrt[]{n+1} \text{ is rational, } \\ \sqrt[]{n-1} - \sqrt[]{n+1} = \frac{a}{b} ; (a, b) = 1, b \neq 0; a, b \in Q \text{ ... } \fbox{1}\\ \implies \dfrac{1}{\sqrt[]{n-1} - \sqrt[]{n+1}} = \frac{b}{a} \\ \implies \frac{b}{a} = \dfrac{\sqrt[]{n-1} + \sqrt[]{n+1}}{(\sqrt[]{n-1} - \sqrt[]{n+1})(\sqrt[]{n-1} - \sqrt[]{n+1})} \\ \implies \frac{b}{a} = \dfrac{\sqrt[]{n-1} + \sqrt[]{n+1}}{(n+1) - (n-1)} \\ \implies \frac{b}{a} = \dfrac{\sqrt[]{n-1} + \sqrt[]{n+1}}{2} \\ \implies \sqrt[]{n-1} + \sqrt[]{n+1} = \dfrac{2b}{a} \text{ ... } \fbox{2} \\ \\ \fbox{1} + \fbox{2} \\ \implies \frac{a}{b} + \frac{2b}{a} = \sqrt[]{n-1} - \sqrt[]{n+1} + \sqrt[]{n-1} - \sqrt[]{n+1} \\ \implies \dfrac{a^2+2b^2}{2ab} = 2\sqrt[]{n+1} \text{ ... } \fbox{3} \\ \fbox{1} - \fbox{2} \\ \implies \frac{a}{b} - \frac{2b}{a} = \sqrt[]{n-1} - \sqrt[]{n+1} - (\sqrt[]{n-1} - \sqrt[]{n+1}) \\ \implies \dfrac{a^2-2b^2}{2ab} = \sqrt[]{n-1} \text{ ... } \fbox{4} \\ \\ \text{From } \fbox{3} \text{ and } \fbox{4} \\ \sqrt[]{n-1} \text{ and } \sqrt[]{n+1} \text{ are rational, as 'a' and 'b' are rational.}\\ \implies n-1 \text{ and } n+1 \text{ are perfect squares} \\ \text{but, there is no possibility for a square no to differ by 2. Therefore, there is no real solutions for that equation making it rational.}

but sqroot -1 is i

ku john - 4 years, 10 months ago

Log in to reply

Where is 1 \sqrt[]{-1} used?

Viki Zeta - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...