Rationally Irrational

38 = x + 1 x + 1 y + 1 x + 1 y + \large \sqrt{38} = x + \cfrac{1}{x + \cfrac{1}{y + \cfrac{1}{x + \cfrac{1}{y+_\ddots} } } }

Considering the continued fractions above, if x x and y y are positive integers, compute x + y x+y .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Anirban Karan
Apr 1, 2017

Let,

a = x + 1 y + 1 x + 1 y + a=x + \cfrac{1}{y + \cfrac{1}{x + \cfrac{1}{y+_\ddots} } }

Then, 38 = x + 1 a = x + 1 x + 1 y + 1 a \sqrt{38}=x+\cfrac{1}{a}=x+\cfrac{1}{x+\cfrac{1}{y+\cfrac{1}{a}}}

Solving for a a from the above equations, we get

a = x y ± x 2 y 2 + 4 x y 2 y a=\cfrac{xy\pm\sqrt{x^2y^2+4xy}}{2y}

x + 2 y x y ± x 2 y 2 + 4 x y = 38 ( x y 2 ) ± 1 2 x x 2 y 2 + 4 x y = 38 \implies x+\cfrac{2y}{xy\pm\sqrt{x^2y^2+4xy}}=\sqrt{38} \implies (x-\cfrac{y}{2})\pm\cfrac{1}{2x}\sqrt{x^2y^2+4xy}=\sqrt{38} [by rationalization of denominator]

Now, for any three integers ( p , q , r ) (p,q,r) it is not possible to write p = q + r \sqrt{p}=q+\sqrt{r} where p p or r r are not perfect squares. It is very easy to prove by taking squares on both sides.

So, x = y 2 x=\cfrac{y}{2} and 1 2 x x 2 y 2 + 4 x y = 38 \cfrac{1}{2x}\sqrt{x^2y^2+4xy}=\sqrt{38}

x = 6 , y = 12 \implies x=6, y=12 and hence, x + y = 18 \boxed{x+y=18}

let n = a 2 + b n=a^2+b where a , b a,b are integers, a , b 0 a,b\neq0

n = a 2 + b n a 2 = b ( n + a ) ( ( n a ) = b n = a + b a + n n=a^2+b\\ n-a^2=b\\ (\sqrt{n}+a)((\sqrt{n}-a)=b\\ \sqrt{n}=a+\dfrac{b}{a+\sqrt{n}}

substituting for n \sqrt{n} repeately, we get a contiued fraction

n = a + b 2 a + b 2 a + b 2 a + = a + 1 2 a b + 1 2 a + 1 2 a b + \sqrt{n}=a+\dfrac{b}{2a+\dfrac{b}{2a+\dfrac{b}{2a+_\ddots}}}=a+\dfrac{1}{\dfrac{2a}{b}+\dfrac{1}{2a+\dfrac{1}{\dfrac{2a}{b}+_\ddots}}}

in the given question n = 38 n=38

also from the information that x and y are integers,

we get, 2 a b \dfrac{2a}{b} is an integer

so a = 6 a=6 and b = 2 b=2 is the only possibilty

thus we get 38 = 6 + 1 12 2 + 1 12 + 1 12 2 + = 6 + 1 6 + 1 12 + 1 6 + \sqrt{38}=6+\dfrac{1}{\dfrac{12}{2}+\dfrac{1}{12+\dfrac{1}{\dfrac{12}{2}+_\ddots}}}=6+\dfrac{1}{6+\dfrac{1}{12+\dfrac{1}{6+_\ddots}}}

thus x = 6 x=6 and y = 12 y=12 , x + y = 12 + 6 = 18 x+y=12+6=\boxed{18}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...