Rationals

Algebra Level 1

You are given that

a + b = c + d a + \sqrt[]{b} = c + \sqrt[]{d}

Then which of the following could be true?

a = c a = c b = d b = d b b or d d is a square number. All of the choices

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Viki Zeta
Aug 23, 2016

a + b = c + d Let a = c + x ; x R case (i) : x = 0 a = c c + b = c + d b = d b = d ... 1 case (ii) : x 0 a = c + x c + x + b = c + d x + b = d ( x + b ) 2 = ( d ) 2 x 2 + b + 2 x b = d 2 x b = d x 2 b b = d b x 2 2 x Left side of this equation contains of rational number, and is rational So, b must be a rational number. So, b is a square no. b is rational. x + b = d x, b is both rational, so d is a square no. Let b = d + x Let x = 0, b = d a + b = c + b a = c Let b = d + x a + d + x = c + d a 2 + 2 a d + x + d + x = c 2 + 2 c d + d a 2 + 2 a d + x + x = c 2 + 2 c d a 2 c 2 = 2 c d 2 a d + x ( a + c ) ( a c ) = 2 c ( d d + x ) On comparing both sides, you get d and d are square of rational numbers. a + \sqrt[]{b} = c + \sqrt[]{d} \\ \text{Let }a = c + x; x \in R \\ \text{case (i) : x = 0} \implies a = c\\ \implies c + \sqrt[]{b} = c + \sqrt[]{d} \\ \implies \sqrt[]{b} = \sqrt[]{d} \\ \implies b = d \text{ ... } \fbox{1}\\ \text{case (ii) : }x \ne 0 \implies a = c + x \\ \implies c + x + \sqrt[]{b} = c + \sqrt[]{d} \\ \implies x + \sqrt[]{b} = \sqrt[]{d} \\ \implies (x + \sqrt[]{b})^2 = (\sqrt[]{d})^2 \\ \implies x^2 + b + 2x\sqrt[]{b} = d \\ \implies 2x\sqrt[]{b} = d - x^2 - b\\ \implies \sqrt[]{b} = \dfrac{d - b - x^2}{2x} \\ \text{Left side of this equation contains of rational number, and is rational} \\ \text{So, }\sqrt[]{b} \text{ must be a rational number. So, b is a square no.} \\ \implies \sqrt[]{b}\text{ is rational.} \\ x + \sqrt[]{b} = \sqrt[]{d} \\ \text{x, }\sqrt[]{b} \text{ is both rational, so d is a square no.} \\ \text{Let b = d + x} \\ \text{Let x = 0, b = d} \\ a + \sqrt[]{b} = c + \sqrt[]{b} \\ \implies a = c \\ \text{Let b = d + x} \\ a + \sqrt[]{d + x} = c + \sqrt[]{d} \\ a^2 + 2a\sqrt[]{d+x} + d + x = c^2 + 2c\sqrt[]{d} + d \\ a^2 + 2a\sqrt[]{d+x} + x = c^2 + 2c\sqrt[]{d} \\ \implies a^2 - c^2 = 2c\sqrt[]{d} - 2a\sqrt[]{d+x} \\ \implies (a+c)(a-c) = 2c(\sqrt[]{d} - \sqrt[]{d+x}) \\ \text{On comparing both sides, you get d and d are square of rational numbers.}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...