In △ A B C , m ∠ C = 2 λ and z = C D is the angle bisector of ∠ C .
Find: A △ A B C z ( a + b ) sin ( λ ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
m ∠ C D B = 1 8 0 ∘ − ( B + λ )
Applying the law of sines on △ A B C ⟹
sin ( B ) b = sin ( 2 λ ) c ⟹ sin ( B ) = c b sin ( 2 λ )
Appling the law of cosines on △ A B C ⟹ c 2 = a 2 + b 2 − 2 a b cos ( 2 λ ) ⟹
sin ( B ) = a 2 + b 2 − 2 a b cos ( 2 λ ) b sin ( 2 λ ) ⟹ cos ( B ) = a 2 + b 2 − 2 a b cos ( 2 λ ) a − b cos ( 2 λ )
and applying the law of sines on △ B C D ⟹ sin ( B ) z = sin ( B + λ ) a ⟹
z = sin ( B ) cos ( λ ) + cos ( B ) sin ( λ ) a sin ( B )
Using the above
sin ( B ) = a 2 + b 2 − 2 a b cos ( 2 λ ) b sin ( 2 λ )
and
cos ( B ) = a 2 + b 2 − 2 a b cos ( 2 λ ) a − b cos ( 2 λ )
and simplifying we obtain z = ( a + b 2 a b ) cos ( λ )
h = a sin ( B ) = a 2 + b 2 − 2 a b cos ( 2 λ ) a b sin ( 2 λ ) ⟹ A △ A B C = 2 1 a b sin ( 2 λ ) ⟹
A △ A B C z ( a + b ) sin ( λ ) = 2 .
Problem Loading...
Note Loading...
Set Loading...
A △ A B C = A △ D B C + A △ A D C = 2 1 a z sin λ + 2 1 b z sin λ = 2 1 z ( a + b ) sin λ , so A △ A B C z ( a + b ) sin λ = 2 1 z ( a + b ) sin λ z ( a + b ) sin λ = 2 .