Re : Solve this sum of exponents under Limits

Calculus Level 2

lim x 1 x + x 2 + x 3 + + x 100 100 x 1 = ? \lim_{x \to 1} \frac {x+x^2+x^3 + \cdots + x^{100}-100}{x - 1} =\ ?


The answer is 5050.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

  • We first substitute x = 1 x=1

  • We get a 0 0 \dfrac{0}{0} situation, so we can apply L'Hôpital's rule.

  • We differentiate both numerator and denominator to get:

lim x 1 x + x 2 + x 3 x 100 100 x 1 = d d x ( x + x 2 + x 3 x 100 100 ) d d x ( x 1 ) = 1 + 2 x + 3 x 2 + 4 x 3 + 100 x 99 1 \lim \limits_{x\rightarrow 1} \dfrac{x+x^2+x^3 \cdots x^{100} -100}{x-1} = \dfrac{\frac{d}{dx} (x+x^2+x^3 \cdots x^{100} -100)}{\frac{d}{dx} (x-1)}=\dfrac{1+2x+3x^2+4x^3 \cdots +100x^{99}}{1}

  • Now we can substitute x = 1 x=1 and get the answer.

lim x 1 x + x 2 + x 3 x 100 100 x 1 = 100 ( 101 ) 2 = 5050 \lim \limits_{x\rightarrow 1} \dfrac{x+x^2+x^3 \cdots x^{100} -100}{x-1} =\dfrac{100(101)}{2}=5050

Would u like to code with me?

SRIJAN Singh - 7 months, 2 weeks ago
Chew-Seong Cheong
Oct 25, 2020

L = lim x 1 x + x 2 + x 3 + + x 100 100 x 1 = lim x 1 ( x 1 ) + ( x 2 1 ) + ( x 3 1 ) + + ( x 100 1 ) x 1 = lim x t o 1 ( x 1 ) + ( x 1 ) ( x + 1 ) + ( x 1 ) ( x 2 + x + 1 ) + + ( x 1 ) ( x 99 + x 98 + x + 1 ) x 1 = lim x t o 1 1 + ( x + 1 ) + ( x 2 + x + 1 ) + + ( x 99 + x 98 + + x + 1 ) = 1 + 2 + 3 + + 100 = 100 ( 101 ) 2 = 5050 \begin{aligned} L & = \lim_{x \to 1} \frac {x+x^2+x^3 + \cdots + x^{100}-100}{x-1} \\ & = \lim_{x \to 1} \frac {(x-1)+(x^2-1)+(x^3-1) + \cdots + (x^{100}-1)}{x-1} \\ & = \lim_{x to 1} \frac {(x-1)+(x-1)(x+1)+(x-1)(x^2+x+1)+\cdots + (x-1)(x^{99}+x^{98}+ \dots x + 1)}{x-1} \\ & = \lim_{x to 1} 1 + (x+1) + (x^2+x+1) + \cdots + (x^{99} + x^{98} + \cdots + x + 1) \\ & = 1 + 2 + 3 + \cdots + 100 = \frac {100(101)}2 = \boxed{5050} \end{aligned}

Srinivasa Gopal
Oct 25, 2020

The numerator can be written as

(x-1) + (^2 -1) + ( x^3 - 1) + (x^4 - 1).......(x^100 - 1)

This can be rewritten as

(x-1) + (x-1)(x+1) + (x-1)(x^2 + x + 1) + (x-1)(x^3+x^2+x+1).......(x-1)(x^99 + x^98..+1)

The expression when computed at x = 1 evaluates to ( x-1)(1 +2 + 3+ 4...100)/(x-1) under limits of x = 1

Under Limits that x = 1 , this computes to 100*101/2 = 5050

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...